File size: 15,881 Bytes
0b1c48c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
---
base_model: bigcode/starencoder
tags:
- generated_from_trainer
metrics:
- precision
- recall
- accuracy
model-index:
- name: classifier-llama3-c-sharp-500k
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# classifier-llama3-c-sharp-500k

This model is a fine-tuned version of [bigcode/starencoder](https://huggingface.co/bigcode/starencoder) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3976
- Precision: 0.4844
- Recall: 0.3567
- F1 Macro: 0.3780
- Accuracy: 0.5809
- F1 Binary Minimum3: 0.6447
- F1 Binary Minimum2: 0.9079

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 256
- seed: 0
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 128
- total_eval_batch_size: 2048
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 30

### Training results

| Training Loss | Epoch   | Step   | Validation Loss | Precision | Recall | F1 Macro | Accuracy | F1 Binary Minimum3 | F1 Binary Minimum2 |
|:-------------:|:-------:|:------:|:---------------:|:---------:|:------:|:--------:|:--------:|:------------------:|:------------------:|
| No log        | 0       | 0      | 5.5906          | 0.0374    | 0.2    | 0.0630   | 0.1870   | 0                  | 0                  |
| 0.4303        | 0.2991  | 1000   | 0.4344          | 0.4626    | 0.3128 | 0.3229   | 0.5565   | 0.5903             | 0.9038             |
| 0.4238        | 0.5983  | 2000   | 0.4268          | 0.4721    | 0.3366 | 0.3523   | 0.5667   | 0.6412             | 0.9052             |
| 0.4281        | 0.8974  | 3000   | 0.4229          | 0.4743    | 0.3374 | 0.3523   | 0.5685   | 0.6456             | 0.9051             |
| 0.4149        | 1.1965  | 4000   | 0.4171          | 0.4751    | 0.3347 | 0.3506   | 0.5700   | 0.6347             | 0.9056             |
| 0.4229        | 1.4957  | 5000   | 0.4192          | 0.4738    | 0.3493 | 0.3657   | 0.5699   | 0.6557             | 0.9058             |
| 0.4321        | 1.7948  | 6000   | 0.4126          | 0.4755    | 0.3452 | 0.3648   | 0.5736   | 0.6351             | 0.9063             |
| 0.408         | 2.0939  | 7000   | 0.4157          | 0.4677    | 0.3417 | 0.3617   | 0.5693   | 0.6088             | 0.9045             |
| 0.4117        | 2.3931  | 8000   | 0.4125          | 0.4783    | 0.3465 | 0.3635   | 0.5726   | 0.6492             | 0.9060             |
| 0.4172        | 2.6922  | 9000   | 0.4219          | 0.4819    | 0.3495 | 0.3611   | 0.5671   | 0.6665             | 0.9051             |
| 0.4061        | 2.9913  | 10000  | 0.4140          | 0.4737    | 0.3336 | 0.3515   | 0.5689   | 0.6022             | 0.9053             |
| 0.4192        | 3.2905  | 11000  | 0.4098          | 0.4805    | 0.3458 | 0.3634   | 0.5728   | 0.6487             | 0.9061             |
| 0.4218        | 3.5896  | 12000  | 0.4082          | 0.4836    | 0.3324 | 0.3484   | 0.5723   | 0.6237             | 0.9068             |
| 0.4007        | 3.8887  | 13000  | 0.4122          | 0.4829    | 0.3514 | 0.3671   | 0.5730   | 0.6594             | 0.9062             |
| 0.4122        | 4.1879  | 14000  | 0.4061          | 0.4789    | 0.3466 | 0.3666   | 0.5754   | 0.6369             | 0.9068             |
| 0.406         | 4.4870  | 15000  | 0.4070          | 0.4810    | 0.3521 | 0.3717   | 0.5753   | 0.6480             | 0.9068             |
| 0.4184        | 4.7861  | 16000  | 0.4060          | 0.4809    | 0.3460 | 0.3656   | 0.5752   | 0.6390             | 0.9069             |
| 0.4124        | 5.0853  | 17000  | 0.4057          | 0.4782    | 0.3491 | 0.3698   | 0.5763   | 0.6358             | 0.9065             |
| 0.4038        | 5.3844  | 18000  | 0.4130          | 0.4841    | 0.3473 | 0.3608   | 0.5697   | 0.6569             | 0.9054             |
| 0.4182        | 5.6835  | 19000  | 0.4048          | 0.4799    | 0.3431 | 0.3622   | 0.5748   | 0.6352             | 0.9066             |
| 0.4067        | 5.9827  | 20000  | 0.4047          | 0.4801    | 0.3520 | 0.3736   | 0.5766   | 0.6364             | 0.9073             |
| 0.4106        | 6.2818  | 21000  | 0.4096          | 0.4741    | 0.3349 | 0.3521   | 0.5708   | 0.6032             | 0.9056             |
| 0.4046        | 6.5809  | 22000  | 0.4043          | 0.4834    | 0.3408 | 0.3597   | 0.5753   | 0.6285             | 0.9069             |
| 0.3939        | 6.8800  | 23000  | 0.4075          | 0.4798    | 0.3597 | 0.3779   | 0.5763   | 0.6575             | 0.9072             |
| 0.4154        | 7.1792  | 24000  | 0.4057          | 0.4756    | 0.3465 | 0.3672   | 0.5754   | 0.6242             | 0.9063             |
| 0.4033        | 7.4783  | 25000  | 0.4054          | 0.4785    | 0.3449 | 0.3657   | 0.5749   | 0.6156             | 0.9067             |
| 0.4152        | 7.7774  | 26000  | 0.4033          | 0.4770    | 0.3500 | 0.3713   | 0.5765   | 0.6341             | 0.9067             |
| 0.4093        | 8.0766  | 27000  | 0.4046          | 0.4826    | 0.3528 | 0.3727   | 0.5769   | 0.6516             | 0.9075             |
| 0.404         | 8.3757  | 28000  | 0.4038          | 0.4835    | 0.3491 | 0.3683   | 0.5757   | 0.6448             | 0.9074             |
| 0.4173        | 8.6748  | 29000  | 0.4149          | 0.4835    | 0.3529 | 0.3642   | 0.5700   | 0.6695             | 0.9052             |
| 0.4199        | 8.9740  | 30000  | 0.4045          | 0.4829    | 0.3547 | 0.3735   | 0.5776   | 0.6551             | 0.9072             |
| 0.4053        | 9.2731  | 31000  | 0.4091          | 0.4681    | 0.3463 | 0.3670   | 0.5712   | 0.6069             | 0.9040             |
| 0.4072        | 9.5722  | 32000  | 0.4027          | 0.4801    | 0.3464 | 0.3671   | 0.5765   | 0.6280             | 0.9072             |
| 0.3984        | 9.8714  | 33000  | 0.4029          | 0.4786    | 0.3568 | 0.3772   | 0.5779   | 0.6508             | 0.9075             |
| 0.4075        | 10.1705 | 34000  | 0.4084          | 0.4716    | 0.3434 | 0.3639   | 0.5710   | 0.6008             | 0.9052             |
| 0.4016        | 10.4696 | 35000  | 0.4021          | 0.4817    | 0.3527 | 0.3732   | 0.5781   | 0.6445             | 0.9078             |
| 0.4077        | 10.7688 | 36000  | 0.4066          | 0.4759    | 0.3627 | 0.3824   | 0.5759   | 0.6582             | 0.9076             |
| 0.4039        | 11.0679 | 37000  | 0.4069          | 0.4707    | 0.3473 | 0.3683   | 0.5731   | 0.6108             | 0.9052             |
| 0.4107        | 11.3670 | 38000  | 0.4021          | 0.4807    | 0.3522 | 0.3741   | 0.5784   | 0.6346             | 0.9075             |
| 0.4208        | 11.6662 | 39000  | 0.4046          | 0.4872    | 0.3498 | 0.3674   | 0.5763   | 0.6531             | 0.9072             |
| 0.4028        | 11.9653 | 40000  | 0.4019          | 0.4788    | 0.3501 | 0.3716   | 0.5772   | 0.6292             | 0.9070             |
| 0.4084        | 12.2644 | 41000  | 0.4067          | 0.4809    | 0.3613 | 0.3789   | 0.5761   | 0.6635             | 0.9075             |
| 0.397         | 12.5636 | 42000  | 0.4023          | 0.4864    | 0.3506 | 0.3697   | 0.5775   | 0.6500             | 0.9077             |
| 0.4122        | 12.8627 | 43000  | 0.4012          | 0.4791    | 0.3516 | 0.3732   | 0.5781   | 0.6370             | 0.9066             |
| 0.3996        | 13.1618 | 44000  | 0.4046          | 0.4829    | 0.3565 | 0.3747   | 0.5766   | 0.6589             | 0.9075             |
| 0.4065        | 13.4610 | 45000  | 0.4015          | 0.4853    | 0.3487 | 0.3681   | 0.5782   | 0.6420             | 0.9073             |
| 0.4099        | 13.7601 | 46000  | 0.4044          | 0.4824    | 0.3576 | 0.3758   | 0.5773   | 0.6605             | 0.9074             |
| 0.3996        | 14.0592 | 47000  | 0.4007          | 0.4839    | 0.3476 | 0.3687   | 0.5782   | 0.6298             | 0.9074             |
| 0.4141        | 14.3584 | 48000  | 0.4022          | 0.4816    | 0.3584 | 0.3777   | 0.5781   | 0.6554             | 0.9074             |
| 0.4148        | 14.6575 | 49000  | 0.4021          | 0.4841    | 0.3401 | 0.3593   | 0.5760   | 0.6213             | 0.9071             |
| 0.399         | 14.9566 | 50000  | 0.4004          | 0.4815    | 0.3569 | 0.3784   | 0.5793   | 0.6447             | 0.9078             |
| 0.4095        | 15.2558 | 51000  | 0.4052          | 0.4750    | 0.3464 | 0.3675   | 0.5739   | 0.6091             | 0.9056             |
| 0.407         | 15.5549 | 52000  | 0.4006          | 0.4829    | 0.3557 | 0.3767   | 0.5792   | 0.6466             | 0.9078             |
| 0.3992        | 15.8540 | 53000  | 0.4014          | 0.4836    | 0.3535 | 0.3726   | 0.5781   | 0.6494             | 0.9070             |
| 0.4021        | 16.1532 | 54000  | 0.4037          | 0.4820    | 0.3580 | 0.3759   | 0.5770   | 0.6597             | 0.9073             |
| 0.4098        | 16.4523 | 55000  | 0.4034          | 0.4853    | 0.3519 | 0.3693   | 0.5757   | 0.6536             | 0.9066             |
| 0.4091        | 16.7514 | 56000  | 0.4000          | 0.4830    | 0.3523 | 0.3726   | 0.5782   | 0.6419             | 0.9075             |
| 0.3989        | 17.0506 | 57000  | 0.3997          | 0.4800    | 0.3546 | 0.3763   | 0.5786   | 0.6380             | 0.9076             |
| 0.3974        | 17.3497 | 58000  | 0.4038          | 0.4847    | 0.3574 | 0.3745   | 0.5770   | 0.6588             | 0.9070             |
| 0.4046        | 17.6488 | 59000  | 0.3997          | 0.4837    | 0.3484 | 0.3692   | 0.5785   | 0.6328             | 0.9074             |
| 0.4033        | 17.9480 | 60000  | 0.4028          | 0.4849    | 0.3571 | 0.3752   | 0.5780   | 0.6599             | 0.9076             |
| 0.3988        | 18.2471 | 61000  | 0.4002          | 0.4767    | 0.3544 | 0.3768   | 0.5784   | 0.6307             | 0.9069             |
| 0.4064        | 18.5462 | 62000  | 0.3995          | 0.4853    | 0.3551 | 0.3761   | 0.5799   | 0.6450             | 0.9079             |
| 0.4107        | 18.8453 | 63000  | 0.4002          | 0.4855    | 0.3546 | 0.3744   | 0.5791   | 0.6522             | 0.9078             |
| 0.4047        | 19.1445 | 64000  | 0.3992          | 0.4864    | 0.3526 | 0.3729   | 0.5798   | 0.6456             | 0.9079             |
| 0.405         | 19.4436 | 65000  | 0.3991          | 0.4860    | 0.3483 | 0.3679   | 0.5786   | 0.6416             | 0.9075             |
| 0.4002        | 19.7427 | 66000  | 0.4000          | 0.4853    | 0.3516 | 0.3709   | 0.5781   | 0.6473             | 0.9072             |
| 0.393         | 20.0419 | 67000  | 0.4005          | 0.4854    | 0.3569 | 0.3763   | 0.5799   | 0.6552             | 0.9078             |
| 0.3946        | 20.3410 | 68000  | 0.4027          | 0.4822    | 0.3587 | 0.3765   | 0.5770   | 0.6609             | 0.9074             |
| 0.4107        | 20.6401 | 69000  | 0.4041          | 0.4848    | 0.3575 | 0.3740   | 0.5759   | 0.6605             | 0.9072             |
| 0.4044        | 20.9393 | 70000  | 0.3985          | 0.4832    | 0.3554 | 0.3771   | 0.5801   | 0.6423             | 0.9078             |
| 0.3865        | 21.2384 | 71000  | 0.3987          | 0.4828    | 0.3595 | 0.3812   | 0.5807   | 0.6462             | 0.9083             |
| 0.3958        | 21.5375 | 72000  | 0.3985          | 0.4831    | 0.3559 | 0.3779   | 0.5799   | 0.6385             | 0.9078             |
| 0.4097        | 21.8367 | 73000  | 0.3992          | 0.4886    | 0.3533 | 0.3734   | 0.5796   | 0.6464             | 0.9074             |
| 0.4098        | 22.1358 | 74000  | 0.3986          | 0.4839    | 0.3558 | 0.3774   | 0.5803   | 0.6428             | 0.9079             |
| 0.4058        | 22.4349 | 75000  | 0.3988          | 0.4805    | 0.3553 | 0.3776   | 0.5794   | 0.6366             | 0.9075             |
| 0.389         | 22.7341 | 76000  | 0.3993          | 0.4852    | 0.3574 | 0.3775   | 0.5797   | 0.6530             | 0.9079             |
| 0.3903        | 23.0332 | 77000  | 0.4034          | 0.6830    | 0.3632 | 0.3816   | 0.5771   | 0.6624             | 0.9076             |
| 0.4029        | 23.3323 | 78000  | 0.3996          | 0.4812    | 0.3492 | 0.3707   | 0.5777   | 0.6267             | 0.9070             |
| 0.3989        | 23.6315 | 79000  | 0.3987          | 0.4817    | 0.3599 | 0.3809   | 0.5815   | 0.6518             | 0.9081             |
| 0.4032        | 23.9306 | 80000  | 0.3983          | 0.4849    | 0.3550 | 0.3760   | 0.5807   | 0.6451             | 0.9081             |
| 0.3981        | 24.2297 | 81000  | 0.3980          | 0.4820    | 0.3570 | 0.3783   | 0.5805   | 0.6444             | 0.9077             |
| 0.3913        | 24.5289 | 82000  | 0.3981          | 0.4825    | 0.3533 | 0.3750   | 0.5799   | 0.6365             | 0.9078             |
| 0.3964        | 24.8280 | 83000  | 0.3985          | 0.4883    | 0.3532 | 0.3733   | 0.5802   | 0.6448             | 0.9078             |
| 0.3942        | 25.1271 | 84000  | 0.3978          | 0.4843    | 0.3526 | 0.3740   | 0.5800   | 0.6394             | 0.9079             |
| 0.4057        | 25.4263 | 85000  | 0.3984          | 0.4870    | 0.3580 | 0.3787   | 0.5812   | 0.6500             | 0.9082             |
| 0.4076        | 25.7254 | 86000  | 0.4014          | 0.4862    | 0.3555 | 0.3726   | 0.5777   | 0.6590             | 0.9072             |
| 0.4003        | 26.0245 | 87000  | 0.3979          | 0.4804    | 0.3602 | 0.3820   | 0.5809   | 0.6442             | 0.9079             |
| 0.3979        | 26.3237 | 88000  | 0.3981          | 0.4845    | 0.3570 | 0.3778   | 0.5803   | 0.6472             | 0.9077             |
| 0.4201        | 26.6228 | 89000  | 0.3998          | 0.4827    | 0.3603 | 0.3799   | 0.5793   | 0.6561             | 0.9079             |
| 0.4014        | 26.9219 | 90000  | 0.3977          | 0.4844    | 0.3569 | 0.3782   | 0.5810   | 0.6457             | 0.9081             |
| 0.4031        | 27.2211 | 91000  | 0.3977          | 0.4838    | 0.3584 | 0.3802   | 0.5816   | 0.6442             | 0.9081             |
| 0.3843        | 27.5202 | 92000  | 0.3985          | 0.4876    | 0.3551 | 0.3751   | 0.5803   | 0.6500             | 0.9079             |
| 0.405         | 27.8193 | 93000  | 0.3978          | 0.4846    | 0.3566 | 0.3776   | 0.5809   | 0.6456             | 0.9079             |
| 0.394         | 28.1185 | 94000  | 0.3978          | 0.4828    | 0.3596 | 0.3811   | 0.5812   | 0.6483             | 0.9080             |
| 0.4047        | 28.4176 | 95000  | 0.3976          | 0.4856    | 0.3553 | 0.3768   | 0.5808   | 0.6426             | 0.9080             |
| 0.3874        | 28.7167 | 96000  | 0.3976          | 0.4844    | 0.3572 | 0.3788   | 0.5813   | 0.6447             | 0.9082             |
| 0.3974        | 29.0159 | 97000  | 0.3976          | 0.4852    | 0.3570 | 0.3786   | 0.5810   | 0.6441             | 0.9081             |
| 0.4096        | 29.3150 | 98000  | 0.3978          | 0.4855    | 0.3581 | 0.3791   | 0.5809   | 0.6473             | 0.9080             |
| 0.397         | 29.6141 | 99000  | 0.3976          | 0.4850    | 0.3586 | 0.3801   | 0.5815   | 0.6462             | 0.9081             |
| 0.4048        | 29.9133 | 100000 | 0.3976          | 0.4844    | 0.3567 | 0.3780   | 0.5809   | 0.6447             | 0.9079             |


### Framework versions

- Transformers 4.43.4
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1