Commit
·
55e5627
1
Parent(s):
2b5d289
Model save
Browse files- README.md +40 -25
- pytorch_model.bin +1 -1
README.md
CHANGED
@@ -24,13 +24,13 @@ model-index:
|
|
24 |
metrics:
|
25 |
- name: Accuracy
|
26 |
type: accuracy
|
27 |
-
value: 0.
|
28 |
- name: Precision
|
29 |
type: precision
|
30 |
-
value: 0.
|
31 |
- name: Recall
|
32 |
type: recall
|
33 |
-
value: 0.
|
34 |
---
|
35 |
|
36 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -40,11 +40,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
40 |
|
41 |
This model is a fine-tuned version of [Zetatech/pvt-tiny-224](https://huggingface.co/Zetatech/pvt-tiny-224) on the imagefolder dataset.
|
42 |
It achieves the following results on the evaluation set:
|
43 |
-
- Loss: 0.
|
44 |
-
- Accuracy: 0.
|
45 |
-
- Precision: 0.
|
46 |
-
- Recall: 0.
|
47 |
-
- F1 Score: 0.
|
48 |
|
49 |
## Model description
|
50 |
|
@@ -72,32 +72,47 @@ The following hyperparameters were used during training:
|
|
72 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
73 |
- lr_scheduler_type: linear
|
74 |
- lr_scheduler_warmup_ratio: 0.1
|
75 |
-
- num_epochs:
|
76 |
|
77 |
### Training results
|
78 |
|
79 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 Score |
|
80 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:|
|
81 |
-
| No log | 1.0 | 4 | 0.
|
82 |
-
| No log | 2.0 | 8 | 0.
|
83 |
-
| No log | 3.0 | 12 | 0.
|
84 |
-
|
|
85 |
-
|
|
86 |
-
|
|
87 |
-
|
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
-
| 0.
|
95 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
|
98 |
### Framework versions
|
99 |
|
100 |
-
- Transformers 4.33.
|
101 |
- Pytorch 2.0.1+cu118
|
102 |
- Datasets 2.14.5
|
103 |
- Tokenizers 0.13.3
|
|
|
24 |
metrics:
|
25 |
- name: Accuracy
|
26 |
type: accuracy
|
27 |
+
value: 0.7833333333333333
|
28 |
- name: Precision
|
29 |
type: precision
|
30 |
+
value: 0.7680555555555556
|
31 |
- name: Recall
|
32 |
type: recall
|
33 |
+
value: 0.7833333333333333
|
34 |
---
|
35 |
|
36 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
40 |
|
41 |
This model is a fine-tuned version of [Zetatech/pvt-tiny-224](https://huggingface.co/Zetatech/pvt-tiny-224) on the imagefolder dataset.
|
42 |
It achieves the following results on the evaluation set:
|
43 |
+
- Loss: 0.4869
|
44 |
+
- Accuracy: 0.7833
|
45 |
+
- Precision: 0.7681
|
46 |
+
- Recall: 0.7833
|
47 |
+
- F1 Score: 0.7632
|
48 |
|
49 |
## Model description
|
50 |
|
|
|
72 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
73 |
- lr_scheduler_type: linear
|
74 |
- lr_scheduler_warmup_ratio: 0.1
|
75 |
+
- num_epochs: 30
|
76 |
|
77 |
### Training results
|
78 |
|
79 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 Score |
|
80 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:|
|
81 |
+
| No log | 1.0 | 4 | 0.5984 | 0.7333 | 0.5378 | 0.7333 | 0.6205 |
|
82 |
+
| No log | 2.0 | 8 | 0.6103 | 0.7333 | 0.5378 | 0.7333 | 0.6205 |
|
83 |
+
| No log | 3.0 | 12 | 0.5861 | 0.7333 | 0.5378 | 0.7333 | 0.6205 |
|
84 |
+
| No log | 4.0 | 16 | 0.5478 | 0.7333 | 0.5378 | 0.7333 | 0.6205 |
|
85 |
+
| No log | 5.0 | 20 | 0.5961 | 0.725 | 0.7119 | 0.725 | 0.7171 |
|
86 |
+
| No log | 6.0 | 24 | 0.5317 | 0.7542 | 0.7261 | 0.7542 | 0.7159 |
|
87 |
+
| No log | 7.0 | 28 | 0.5620 | 0.7458 | 0.7289 | 0.7458 | 0.7342 |
|
88 |
+
| 0.5878 | 8.0 | 32 | 0.5281 | 0.7542 | 0.7316 | 0.7542 | 0.6973 |
|
89 |
+
| 0.5878 | 9.0 | 36 | 0.5434 | 0.7625 | 0.7395 | 0.7625 | 0.7368 |
|
90 |
+
| 0.5878 | 10.0 | 40 | 0.5236 | 0.775 | 0.7658 | 0.775 | 0.7321 |
|
91 |
+
| 0.5878 | 11.0 | 44 | 0.5411 | 0.7542 | 0.7382 | 0.7542 | 0.7429 |
|
92 |
+
| 0.5878 | 12.0 | 48 | 0.5186 | 0.7708 | 0.7507 | 0.7708 | 0.7460 |
|
93 |
+
| 0.5878 | 13.0 | 52 | 0.5194 | 0.7667 | 0.7500 | 0.7667 | 0.7533 |
|
94 |
+
| 0.5878 | 14.0 | 56 | 0.5049 | 0.7875 | 0.7739 | 0.7875 | 0.7621 |
|
95 |
+
| 0.4973 | 15.0 | 60 | 0.5125 | 0.7833 | 0.7691 | 0.7833 | 0.7709 |
|
96 |
+
| 0.4973 | 16.0 | 64 | 0.5000 | 0.7917 | 0.7804 | 0.7917 | 0.7656 |
|
97 |
+
| 0.4973 | 17.0 | 68 | 0.5137 | 0.7583 | 0.7560 | 0.7583 | 0.7571 |
|
98 |
+
| 0.4973 | 18.0 | 72 | 0.4833 | 0.8 | 0.788 | 0.8 | 0.7833 |
|
99 |
+
| 0.4973 | 19.0 | 76 | 0.4929 | 0.7917 | 0.7816 | 0.7917 | 0.7843 |
|
100 |
+
| 0.4973 | 20.0 | 80 | 0.4858 | 0.8042 | 0.7930 | 0.8042 | 0.7887 |
|
101 |
+
| 0.4973 | 21.0 | 84 | 0.4900 | 0.7917 | 0.7777 | 0.7917 | 0.7743 |
|
102 |
+
| 0.4973 | 22.0 | 88 | 0.4886 | 0.7958 | 0.7829 | 0.7958 | 0.7815 |
|
103 |
+
| 0.439 | 23.0 | 92 | 0.4841 | 0.7917 | 0.7778 | 0.7917 | 0.7723 |
|
104 |
+
| 0.439 | 24.0 | 96 | 0.4855 | 0.8 | 0.7883 | 0.8 | 0.7885 |
|
105 |
+
| 0.439 | 25.0 | 100 | 0.4856 | 0.8 | 0.7879 | 0.8 | 0.7869 |
|
106 |
+
| 0.439 | 26.0 | 104 | 0.4839 | 0.8 | 0.7879 | 0.8 | 0.7869 |
|
107 |
+
| 0.439 | 27.0 | 108 | 0.4811 | 0.8 | 0.7879 | 0.8 | 0.7869 |
|
108 |
+
| 0.439 | 28.0 | 112 | 0.4834 | 0.8 | 0.7889 | 0.8 | 0.7901 |
|
109 |
+
| 0.439 | 29.0 | 116 | 0.4839 | 0.8 | 0.7889 | 0.8 | 0.7901 |
|
110 |
+
| 0.4092 | 30.0 | 120 | 0.4838 | 0.8 | 0.7889 | 0.8 | 0.7901 |
|
111 |
|
112 |
|
113 |
### Framework versions
|
114 |
|
115 |
+
- Transformers 4.33.3
|
116 |
- Pytorch 2.0.1+cu118
|
117 |
- Datasets 2.14.5
|
118 |
- Tokenizers 0.13.3
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 50929233
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b634115061b638cf372f48bb088fe3d94d8afe2c75853ffe16d6cb6855a3169f
|
3 |
size 50929233
|