--- base_model: llm-jp/llm-jp-3-13b tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Hktm - **License:** apache-2.0 - **Finetuned from model :** llm-jp/llm-jp-3-13b This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [](https://github.com/unslothai/unsloth) # 推論方法 ``` from tqdm import tqdm from unsloth import FastLanguageModel import torch import json model_name = "Hktm/llm-jp-3-13b-sft3" model, tokenizer = FastLanguageModel.from_pretrained( model_name=model_name, max_seq_length=2048, dtype=None, load_in_4bit=True, token = HF_TOKEN, ) FastLanguageModel.for_inference(model) datasets = [] with open("./elyza-tasks-100-TV_0.jsonl", mode="r") as f: item = "" for line in f: line = line.strip() item += line if item.endswith("}"): datasets.append(json.loads(item)) item = "" PROMPT_TEMPLATE_WO_DEMO = """### 指示: 下記の質問に回答してください。 ### 質問: {} ### 回答:""" SPLIT_WORD = "### 回答:" results = [] for dt in tqdm(datasets): input = dt["input"] prompt = PROMPT_TEMPLATE_WO_DEMO.format(input).strip() inputs = tokenizer([prompt], return_tensors = "pt").to(model.device) outputs = model.generate( **inputs, max_new_tokens = 2048, use_cache = True, do_sample=False, repetition_penalty=1.2 ) _pred = tokenizer.decode(outputs[0], skip_special_tokens=True) prediction = _pred.split(SPLIT_WORD)[-1].strip() result = { "task_id": dt["task_id"], "input": input, "output": prediction, # "pred_src": pred_src } print("\n") print(json.dumps(result, ensure_ascii=False, indent=2)) results.append(result) with open( f"/content/drive/MyDrive/Colab Notebooks/data/20241123_MatsuoLLM_Final/{model_name}_output.jsonl", mode='w', encoding='utf-8' ) as f: for result in results: json.dump(result, f, ensure_ascii=False) f.write('\n') ```