from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer from typing import Dict, List, Any from tokenizers.decoders import WordPiece class EndpointHandler: def __init__(self, path="."): model = AutoModelForTokenClassification.from_pretrained(path) tokenizer = AutoTokenizer.from_pretrained(path) self.pipeline = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy='simple') self.pipeline.tokenizer.backend_tokenizer.decoder = WordPiece() def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: """ data args: inputs (:obj: `str` | `PIL.Image` | `np.array`) kwargs Return: A :obj:`list` | `dict`: will be serialized and returned """ return self.pipeline(data['inputs'])