--- library_name: transformers language: - sw license: mit base_model: microsoft/speecht5_tts tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_17_0 model-index: - name: Swahili TTS results: [] --- # Swahili TTS This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on the Swahili dataset. It achieves the following results on the evaluation set: - Loss: 0.5318 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.6394 | 1.3351 | 1000 | 0.5669 | | 0.591 | 2.6702 | 2000 | 0.5440 | | 0.5796 | 4.0053 | 3000 | 0.5352 | | 0.5689 | 5.3405 | 4000 | 0.5318 | ### Framework versions - Transformers 4.50.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0