--- library_name: transformers license: apache-2.0 base_model: MCG-NJU/videomae-large-finetuned-kinetics tags: - generated_from_trainer metrics: - accuracy model-index: - name: Hibernates-MEA-R2-V0 results: [] --- # Hibernates-MEA-R2-V0 An advanced AI system for visual sequence processing, extending the capabilities of [MCG-NJU/videomae-large-finetuned-kinetics](https://huggingface.co/MCG-NJU/videomae-large-finetuned-kinetics). Key Performance Indicators: - Optimal Loss: 0.4894 - Peak Accuracy: 80.43% ## System Overview Advanced AI architecture optimized for visual sequence understanding: - Core: Deep learning transformer system - Data Handling: Sequential frame processing - Main Function: Visual content categorization - Learning Cycles: 50 complete epochs - Results Summary: * Maximum Precision: 80.43% (epoch 7) * Consistent Performance: 75%+ maintained ## Applications & Requirements ### Core Applications - Visual sequence interpretation - Dynamic content analysis - Environmental context recognition - Time-series visual processing ### Technical Considerations - Task-specific optimization - Computing needs: High-performance GPU - Memory constraints: 4-sample batching - Data format: Standardized input required ## Development Data Implementation Details: - Cycle Structure: 65 iterations per epoch - Development Span: 3250 total iterations - Assessment Methods: Dual metric system (loss/accuracy) - Progress Metrics: * Starting Point: 54% accuracy * Final Result: 73.91% * Best-case Loss: 0.4894 ## Implementation Specifications ### Core Parameters Implementation utilized the following configuration: - Learning Rate: 1e-05 - Training Units: 4 per batch - Validation Units: 4 per batch - Random Seed: 42 - Optimization: Advanced weight management with adamw_torch * Beta values: (0.9,0.999) * Epsilon: 1e-08 - Rate Control: Linear adjustment - Warmup Ratio: 0.1 - Total Iterations: 3250 ### Development Progress | Cycle Loss | Epoch | Step | Validation Loss | Success Rate | |:----------:|:-----:|:----:|:---------------:|:------------:| | 0.6186 | 0.02 | 65 | 0.7367 | 0.5435 | | 0.5974 | 1.02 | 130 | 0.8185 | 0.5435 | | 0.5491 | 2.02 | 195 | 0.8372 | 0.5435 | | 0.6156 | 3.02 | 260 | 0.6620 | 0.5870 | | 0.6255 | 4.02 | 325 | 0.6835 | 0.5435 | | 0.438 | 5.02 | 390 | 1.2116 | 0.5435 | | 0.4653 | 6.02 | 455 | 0.6002 | 0.5652 | | 0.5876 | 7.02 | 520 | 0.4894 | 0.8043 | | 0.3801 | 8.02 | 585 | 0.8324 | 0.5435 | | 0.4474 | 9.02 | 650 | 1.1581 | 0.5652 | | 0.694 | 10.02 | 715 | 0.5354 | 0.7174 | | 0.4773 | 11.02 | 780 | 0.6181 | 0.6957 | | 0.6208 | 12.02 | 845 | 0.5677 | 0.7609 | | 0.344 | 13.02 | 910 | 0.7452 | 0.6087 | | 0.254 | 14.02 | 975 | 0.6362 | 0.7391 | | 0.4578 | 15.02 | 1040 | 0.8304 | 0.6957 | | 0.3954 | 16.02 | 1105 | 0.6049 | 0.7609 | | 0.248 | 17.02 | 1170 | 0.9506 | 0.6739 | | 0.1334 | 18.02 | 1235 | 1.1876 | 0.6739 | | 0.534 | 19.02 | 1300 | 0.6296 | 0.7391 | | 0.3556 | 20.02 | 1365 | 1.3007 | 0.6957 | | 0.5439 | 21.02 | 1430 | 1.5066 | 0.6739 | | 0.4107 | 22.02 | 1495 | 0.9273 | 0.8043 | | 0.61 | 23.02 | 1560 | 1.0008 | 0.7174 | | 0.6482 | 24.02 | 1625 | 0.7548 | 0.7609 | | 0.199 | 25.02 | 1690 | 0.7917 | 0.7826 | | 0.1185 | 26.02 | 1755 | 0.7529 | 0.7826 | | 0.3886 | 27.02 | 1820 | 0.8627 | 0.7609 | | 0.0123 | 28.02 | 1885 | 1.3886 | 0.7174 | | 0.5328 | 29.02 | 1950 | 1.2803 | 0.6957 | | 0.2961 | 30.02 | 2015 | 1.4397 | 0.7174 | | 0.1192 | 31.02 | 2080 | 2.2563 | 0.6304 | | 0.145 | 32.02 | 2145 | 1.0465 | 0.7609 | | 0.0924 | 33.02 | 2210 | 0.9859 | 0.7826 | | 0.1016 | 34.02 | 2275 | 1.0758 | 0.7826 | | 0.1894 | 35.02 | 2340 | 1.2088 | 0.7609 | | 0.2657 | 36.02 | 2405 | 1.5409 | 0.7391 | | 0.1235 | 37.02 | 2470 | 1.2736 | 0.7609 | | 0.1539 | 38.02 | 2535 | 1.2608 | 0.7609 | | 0.03 | 39.02 | 2600 | 1.2058 | 0.7609 | | 0.1447 | 40.02 | 2665 | 1.1072 | 0.7609 | | 0.0888 | 41.02 | 2730 | 1.1454 | 0.7826 | | 0.0016 | 42.02 | 2795 | 1.1194 | 0.7826 | | 0.1489 | 43.02 | 2860 | 1.2170 | 0.7609 | | 0.0004 | 44.02 | 2925 | 1.1894 | 0.7609 | | 0.0004 | 45.02 | 2990 | 1.3329 | 0.7391 | | 0.0014 | 46.02 | 3055 | 1.1887 | 0.7609 | | 0.1675 | 47.02 | 3120 | 1.2652 | 0.7391 | | 0.012 | 48.02 | 3185 | 1.3228 | 0.7391 | | 0.0475 | 49.02 | 3250 | 1.3507 | 0.7391 | ### System Versions - Transformers 4.46.2 - Pytorch 2.0.1+cu117 - Datasets 3.0.1 - Tokenizers 0.20.0