--- license: apache-2.0 language: - en metrics: - accuracy base_model: - meta-llama/Llama-3.1-8B-Instruct pipeline_tag: reinforcement-learning --- # Hibernates-2B-R1-V1 A highly efficient 2B parameter language model optimized for reasoning and dialogue tasks. ## Model Overview Hibernates-2B is a custom transformer architecture designed for advanced language understanding and generation. Built with performance and efficiency in mind, it leverages state-of-the-art techniques for natural language processing. ### Key Features - 2B Parameters - 4096 Token Context Window - Custom Transformer Architecture - Optimized for CPU and GPU Inference - Multi-Turn Dialogue Support ## Technical Specifications - **Architecture**: Custom Transformer - **Parameters**: 2 Billion - **Context Length**: 4096 tokens - **Model Type**: Decoder-only - **Tokenizer**: Custom WordPiece - **Format**: SafeTensors ## Usage Guide ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch # Load model and tokenizer model_id = "Hibernates-2B-R1-V1" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.float16, device_map="auto" ) # Example conversation messages = [ {"role": "system", "content": "You are a helpful AI assistant."}, {"role": "user", "content": "How can you help me today?"} ] # Generate response input_text = tokenizer.apply_chat_template(messages, tokenize=False) inputs = tokenizer(input_text, return_tensors="pt").to(model.device) outputs = model.generate( inputs["input_ids"], max_new_tokens=512, temperature=0.7, top_p=0.95 ) response = tokenizer.decode(outputs[0], skip_special_tokens=True) ``` ## Performance Characteristics ### Strengths - Efficient Resource Usage - Strong Reasoning Capabilities - Multi-Turn Dialogue - Context Awareness - Instruction Following ### Considerations - Resource Requirements: 8GB+ GPU RAM recommended - Task Specificity: Best suited for dialogue and reasoning tasks - Language Support: Primary focus on English - Model Size: Optimized for balance of performance and efficiency ## License and Usage - Research and commercial use permitted - Attribution appreciated but not required - No warranty provided ## Citation If you use this model in your research, please cite: ```bibtex @software{hibernates2b_2024, title={Hibernates-2B: Efficient Language Model for Reasoning}, year={2024}, version={R1-V1} } ``` ## Acknowledgments Built using PyTorch and Hugging Face Transformers. Special thanks to the open-source AI community. ## Download Instructions Due to file size limitations, the model files are hosted externally. Download them from: 1. [model-00001-of-00002.safetensors](https://huggingface.co/HibernatesAI/Hibernates-2B-R1-V1/blob/main/model-00001-of-00002.safetensors) 2. [model-00002-of-00002.safetensors](https://huggingface.co/HibernatesAI/Hibernates-2B-R1-V1/blob/main/model-00002-of-00002.safetensors) Place these files in the root directory of the project before running.