File size: 3,082 Bytes
7ecf221 d02de7c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
---
license: apache-2.0
language:
- en
metrics:
- accuracy
base_model:
- meta-llama/Llama-3.1-8B-Instruct
pipeline_tag: reinforcement-learning
---
# Hibernates-2B-R1-V1
A highly efficient 2B parameter language model optimized for reasoning and dialogue tasks.
## Model Overview
Hibernates-2B is a custom transformer architecture designed for advanced language understanding and generation. Built with performance and efficiency in mind, it leverages state-of-the-art techniques for natural language processing.
### Key Features
- 2B Parameters
- 4096 Token Context Window
- Custom Transformer Architecture
- Optimized for CPU and GPU Inference
- Multi-Turn Dialogue Support
## Technical Specifications
- **Architecture**: Custom Transformer
- **Parameters**: 2 Billion
- **Context Length**: 4096 tokens
- **Model Type**: Decoder-only
- **Tokenizer**: Custom WordPiece
- **Format**: SafeTensors
## Usage Guide
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
# Load model and tokenizer
model_id = "Hibernates-2B-R1-V1"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.float16,
device_map="auto"
)
# Example conversation
messages = [
{"role": "system", "content": "You are a helpful AI assistant."},
{"role": "user", "content": "How can you help me today?"}
]
# Generate response
input_text = tokenizer.apply_chat_template(messages, tokenize=False)
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
outputs = model.generate(
inputs["input_ids"],
max_new_tokens=512,
temperature=0.7,
top_p=0.95
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
```
## Performance Characteristics
### Strengths
- Efficient Resource Usage
- Strong Reasoning Capabilities
- Multi-Turn Dialogue
- Context Awareness
- Instruction Following
### Considerations
- Resource Requirements: 8GB+ GPU RAM recommended
- Task Specificity: Best suited for dialogue and reasoning tasks
- Language Support: Primary focus on English
- Model Size: Optimized for balance of performance and efficiency
## License and Usage
- Research and commercial use permitted
- Attribution appreciated but not required
- No warranty provided
## Citation
If you use this model in your research, please cite:
```bibtex
@software{hibernates2b_2024,
title={Hibernates-2B: Efficient Language Model for Reasoning},
year={2024},
version={R1-V1}
}
```
## Acknowledgments
Built using PyTorch and Hugging Face Transformers. Special thanks to the open-source AI community.
## Download Instructions
Due to file size limitations, the model files are hosted externally. Download them from:
1. [model-00001-of-00002.safetensors](https://huggingface.co/HibernatesAI/Hibernates-2B-R1-V1/blob/main/model-00001-of-00002.safetensors)
2. [model-00002-of-00002.safetensors](https://huggingface.co/HibernatesAI/Hibernates-2B-R1-V1/blob/main/model-00002-of-00002.safetensors)
Place these files in the root directory of the project before running. |