from dataclasses import dataclass from typing import Optional, Tuple import torch import torch.nn as nn from transformers.models.wav2vec2.modeling_wav2vec2 import ( Wav2Vec2PreTrainedModel, Wav2Vec2Model ) @dataclass class AudioClassifierOutput: loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None hidden_states: Optional[Tuple[torch.FloatTensor]] = None attentions: Optional[Tuple[torch.FloatTensor]] = None class Wav2Vec2ForAudioClassification(Wav2Vec2PreTrainedModel): def __init__(self, config): super().__init__(config) self.wav2vec2 = Wav2Vec2Model(config) self.classifier = nn.Sequential( nn.Linear(config.hidden_size, config.classifier_proj_size), nn.GELU(), nn.Dropout(config.final_dropout), nn.Linear(config.classifier_proj_size, config.num_labels) ) self.init_weights() def freeze_feature_encoder(self): self.wav2vec2.feature_extractor._freeze_parameters() def forward( self, input_values, attention_mask=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): outputs = self.wav2vec2( input_values, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] pooled_output = torch.mean(hidden_states, dim=1) logits = self.classifier(pooled_output) loss = None if labels is not None: loss_fct = nn.CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) return AudioClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, )