hibernatesai's picture
Upload 11 files
45e1a77 verified
import os
import torch
from transformers import Trainer, TrainingArguments
from src.model.architectures.wav2vec2 import Wav2Vec2ForAudioClassification
from src.data.preprocessing.feature_extraction import load_and_process_audio
import json
def load_config(config_path):
with open(config_path, 'r') as f:
return json.load(f)
def main():
# Load configurations
model_config = load_config('configs/model/base_config.json')
training_config = load_config('configs/training/base_config.json')
# Initialize model
model = Wav2Vec2ForAudioClassification.from_pretrained(
'wav2vec2-base',
num_labels=2,
**model_config
)
# Training arguments
training_args = TrainingArguments(
output_dir="results/checkpoints",
**training_config['training_parameters'],
**training_config['optimization']
)
# Initialize trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=None, # Add your dataset here
eval_dataset=None, # Add your eval dataset here
)
# Train
trainer.train()
if __name__ == "__main__":
main()