File size: 5,468 Bytes
1f9caee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import os
import gradio as gr
from pytube import YouTube
from pydub import AudioSegment
import numpy as np
import faiss
from sklearn.cluster import MiniBatchKMeans
import traceback

def calculate_audio_duration(file_path):
    duration_seconds = len(AudioSegment.from_file(file_path)) / 1000.0
    return duration_seconds

def youtube_to_wav(url, dataset_folder):
    try:
        yt = YouTube(url).streams.get_audio_only().download(output_path=dataset_folder)
        mp4_path = os.path.join(dataset_folder, 'audio.mp4')
        wav_path = os.path.join(dataset_folder, 'audio.wav')
        os.rename(yt, mp4_path)
        os.system(f'ffmpeg -i {mp4_path} -acodec pcm_s16le -ar 44100 {wav_path}')
        os.remove(mp4_path)
        return f'Audio downloaded and converted to WAV: {wav_path}'
    except Exception as e:
        return f"Error: {e}"

def create_training_files(model_name, dataset_folder, youtube_link):
    if youtube_link:
        youtube_to_wav(youtube_link, dataset_folder)

    if not os.listdir(dataset_folder):
        return "Your dataset folder is empty."

    os.makedirs(f'./logs/{model_name}', exist_ok=True)
    
    os.system(f'python infer/modules/train/preprocess.py {dataset_folder} 32000 2 ./logs/{model_name} False 3.0 > /dev/null 2>&1')
    
    with open(f'./logs/{model_name}/preprocess.log', 'r') as f:
        if 'end preprocess' in f.read():
            return "Preprocessing Success"
        else:
            return "Error preprocessing data... Make sure your dataset folder is correct."

def extract_features(model_name, f0method):
    os.system(f'python infer/modules/train/extract/extract_f0_rmvpe.py 1 0 0 ./logs/{model_name} True' if f0method == "rmvpe_gpu" else 
              f'python infer/modules/train/extract/extract_f0_print.py ./logs/{model_name} 2 {f0method}')
    os.system(f'python infer/modules/train/extract_feature_print.py cuda:0 1 0 ./logs/{model_name} v2 True')
    
    with open(f'./logs/{model_name}/extract_f0_feature.log', 'r') as f:
        if 'all-feature-done' in f.read():
            return "Feature Extraction Success"
        else:
            return "Error in feature extraction... Make sure your data was preprocessed."

def train_index(exp_dir1, version19):
    exp_dir = f"logs/{exp_dir1}"
    os.makedirs(exp_dir, exist_ok=True)
    feature_dir = f"{exp_dir}/3_feature256" if version19 == "v1" else f"{exp_dir}/3_feature768"
    if not os.path.exists(feature_dir):
        return "Please perform feature extraction first!"

    listdir_res = list(os.listdir(feature_dir))
    if len(listdir_res) == 0:
        return "Please perform feature extraction first!"

    infos = []
    npys = []
    for name in sorted(listdir_res):
        phone = np.load(f"{feature_dir}/{name}")
        npys.append(phone)
    big_npy = np.concatenate(npys, 0)
    big_npy_idx = np.arange(big_npy.shape[0])
    np.random.shuffle(big_npy_idx)
    big_npy = big_npy[big_npy_idx]
    if big_npy.shape[0] > 2e5:
        infos.append(f"Trying k-means with {big_npy.shape[0]} to 10k centers.")
        try:
            big_npy = MiniBatchKMeans(
                n_clusters=10000,
                verbose=True,
                batch_size=256,
                compute_labels=False,
                init="random",
            ).fit(big_npy).cluster_centers_
        except:
            info = traceback.format_exc()
            infos.append(info)
            return "\n".join(infos)

    np.save(f"{exp_dir}/total_fea.npy", big_npy)
    n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39)
    infos.append(f"{big_npy.shape},{n_ivf}")

    index = faiss.index_factory(256 if version19 == "v1" else 768, f"IVF{n_ivf},Flat")
    infos.append("Training index")
    index_ivf = faiss.extract_index_ivf(index)
    index_ivf.nprobe = 1
    index.train(big_npy)
    faiss.write_index(index, f"{exp_dir}/trained_IVF{n_ivf}_Flat_nprobe_{index_ivf.nprobe}_{exp_dir1}_{version19}.index")

    infos.append("Adding to index")
    batch_size_add = 8192
    for i in range(0, big_npy.shape[0], batch_size_add):
        index.add(big_npy[i: i + batch_size_add])
    faiss.write_index(index, f"{exp_dir}/added_IVF{n_ivf}_Flat_nprobe_{index_ivf.nprobe}_{exp_dir1}_{version19}.index")

    infos.append(f"Successfully built index: added_IVF{n_ivf}_Flat_nprobe_{index_ivf.nprobe}_{exp_dir1}_{version19}.index")
    return "\n".join(infos)

with gr.Blocks() as demo:
    with gr.Tab("CREATE TRANING FILES - This will process the data, extract the features and create your index file for you!"):
        with gr.Row():
            model_name = gr.Textbox(label="Model Name", value="My-Voice")
            dataset_folder = gr.Textbox(label="Dataset Folder", value="/content/dataset")
        youtube_link = gr.Textbox(label="YouTube Link (optional)")
        with gr.Row():
            start_button = gr.Button("Create Training Files")
            f0method = gr.Dropdown(["pm", "harvest", "rmvpe", "rmvpe_gpu"], label="F0 Method", value="rmvpe_gpu")
        extract_button = gr.Button("Extract Features")
        train_button = gr.Button("Train Index")

    output = gr.Textbox(label="Output")

    start_button.click(create_training_files, inputs=[model_name, dataset_folder, youtube_link], outputs=output)
    extract_button.click(extract_features, inputs=[model_name, f0method], outputs=output)
    train_button.click(train_index, inputs=[model_name, "v2"], outputs=output)

demo.launch()






# beta state ......