Text Classification
Transformers
PyTorch
Safetensors
Hebrew
roberta
vitvit commited on
Commit
f061700
·
verified ·
1 Parent(s): 1d200f6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +14 -1
README.md CHANGED
@@ -1,3 +1,7 @@
 
 
 
 
1
  ```python
2
  from transformers import RobertaTokenizerFast, AutoModelForSequenceClassification
3
  from datasets import load_dataset, Dataset
@@ -40,8 +44,17 @@ window_size = 5
40
  context_l = create_windowed_context(raw_dataset, window_size)
41
  raw_dataset_window = raw_dataset.map(partial(create_windowed_context_ds, context_l), batched=False, with_indices=True)
42
  tokenized_data = raw_dataset_window.map(tokenize_function, batched=True)
 
43
 
44
 
 
45
 
46
-
 
 
 
 
 
 
 
47
  ```
 
1
+ ## Hebrew Conclusion Extraction Model (based on sequence classification)
2
+
3
+ #### How to use
4
+
5
  ```python
6
  from transformers import RobertaTokenizerFast, AutoModelForSequenceClassification
7
  from datasets import load_dataset, Dataset
 
44
  context_l = create_windowed_context(raw_dataset, window_size)
45
  raw_dataset_window = raw_dataset.map(partial(create_windowed_context_ds, context_l), batched=False, with_indices=True)
46
  tokenized_data = raw_dataset_window.map(tokenize_function, batched=True)
47
+ ```
48
 
49
 
50
+ ### Citing
51
 
52
+ If you use HeConE in your research, please cite [HeRo: RoBERTa and Longformer Hebrew Language Models](http://arxiv.org/abs/2304.11077).
53
+ ```
54
+ @article{shalumov2023hero,
55
+ title={HeRo: RoBERTa and Longformer Hebrew Language Models},
56
+ author={Vitaly Shalumov and Harel Haskey},
57
+ year={2023},
58
+ journal={arXiv:2304.11077},
59
+ }
60
  ```