Update README.md
Browse files
README.md
CHANGED
@@ -11,3 +11,107 @@ base_model:
|
|
11 |
- deepseek-ai/DeepSeek-R1
|
12 |
pipeline_tag: translation
|
13 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
- deepseek-ai/DeepSeek-R1
|
12 |
pipeline_tag: translation
|
13 |
---
|
14 |
+
import os
|
15 |
+
import argparse
|
16 |
+
import pandas as pd
|
17 |
+
from datasets import Dataset
|
18 |
+
from transformers import (
|
19 |
+
AutoTokenizer,
|
20 |
+
AutoModelForSeq2SeqLM,
|
21 |
+
Seq2SeqTrainingArguments,
|
22 |
+
Seq2SeqTrainer,
|
23 |
+
DataCollatorForSeq2Seq
|
24 |
+
)
|
25 |
+
from utils import compute_metrics
|
26 |
+
|
27 |
+
def load_dataset(file_path):
|
28 |
+
"""Load and prepare the dataset."""
|
29 |
+
df = pd.read_csv(file_path)
|
30 |
+
dataset = Dataset.from_pandas(df)
|
31 |
+
# Split dataset into train and validation
|
32 |
+
split_dataset = dataset.train_test_split(test_size=0.1)
|
33 |
+
return split_dataset
|
34 |
+
|
35 |
+
def preprocess_function(examples, tokenizer, max_length=128):
|
36 |
+
"""Tokenize the texts."""
|
37 |
+
inputs = [ex for ex in examples["english_text"]]
|
38 |
+
targets = [ex for ex in examples["malayalam_text"]]
|
39 |
+
|
40 |
+
model_inputs = tokenizer(
|
41 |
+
inputs,
|
42 |
+
max_length=max_length,
|
43 |
+
truncation=True,
|
44 |
+
padding="max_length",
|
45 |
+
)
|
46 |
+
|
47 |
+
with tokenizer.as_target_tokenizer():
|
48 |
+
labels = tokenizer(
|
49 |
+
targets,
|
50 |
+
max_length=max_length,
|
51 |
+
truncation=True,
|
52 |
+
padding="max_length",
|
53 |
+
)
|
54 |
+
|
55 |
+
model_inputs["labels"] = labels["input_ids"]
|
56 |
+
return model_inputs
|
57 |
+
|
58 |
+
def main(args):
|
59 |
+
# Load tokenizer and model
|
60 |
+
model_name = "google/mt5-small"
|
61 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
62 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
63 |
+
|
64 |
+
# Load and preprocess dataset
|
65 |
+
dataset = load_dataset("dataset/malayalam_dataset.csv")
|
66 |
+
|
67 |
+
# Tokenize datasets
|
68 |
+
tokenized_datasets = dataset.map(
|
69 |
+
lambda x: preprocess_function(x, tokenizer),
|
70 |
+
batched=True,
|
71 |
+
remove_columns=dataset["train"].column_names
|
72 |
+
)
|
73 |
+
|
74 |
+
# Define training arguments
|
75 |
+
training_args = Seq2SeqTrainingArguments(
|
76 |
+
output_dir="./model",
|
77 |
+
evaluation_strategy="epoch",
|
78 |
+
learning_rate=args.learning_rate,
|
79 |
+
per_device_train_batch_size=args.batch_size,
|
80 |
+
per_device_eval_batch_size=args.batch_size,
|
81 |
+
num_train_epochs=args.epochs,
|
82 |
+
weight_decay=0.01,
|
83 |
+
save_total_limit=2,
|
84 |
+
predict_with_generate=True,
|
85 |
+
logging_dir="./logs",
|
86 |
+
logging_steps=100,
|
87 |
+
push_to_hub=True,
|
88 |
+
)
|
89 |
+
|
90 |
+
# Create data collator
|
91 |
+
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)
|
92 |
+
|
93 |
+
# Initialize trainer
|
94 |
+
trainer = Seq2SeqTrainer(
|
95 |
+
model=model,
|
96 |
+
args=training_args,
|
97 |
+
train_dataset=tokenized_datasets["train"],
|
98 |
+
eval_dataset=tokenized_datasets["test"],
|
99 |
+
data_collator=data_collator,
|
100 |
+
tokenizer=tokenizer,
|
101 |
+
compute_metrics=compute_metrics
|
102 |
+
)
|
103 |
+
|
104 |
+
# Train the model
|
105 |
+
trainer.train()
|
106 |
+
|
107 |
+
# Save the model
|
108 |
+
trainer.save_model("./model")
|
109 |
+
tokenizer.save_pretrained("./model")
|
110 |
+
|
111 |
+
if __name__ == "__main__":
|
112 |
+
parser = argparse.ArgumentParser()
|
113 |
+
parser.add_argument("--epochs", type=int, default=3)
|
114 |
+
parser.add_argument("--batch_size", type=int, default=8)
|
115 |
+
parser.add_argument("--learning_rate", type=float, default=2e-5)
|
116 |
+
args = parser.parse_args()
|
117 |
+
main(args)
|