HarleyCooper commited on
Commit
2ec20cf
·
verified ·
1 Parent(s): 41047a5

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +104 -142
README.md CHANGED
@@ -3,197 +3,159 @@ library_name: transformers
3
  tags: []
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
 
12
  ## Model Details
13
 
14
- ### Model Description
 
 
 
 
15
 
16
- <!-- Provide a longer summary of what this model is. -->
 
 
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
 
 
 
 
 
 
 
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
  ### Direct Use
 
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
 
52
  ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
 
58
  ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
 
 
63
 
64
- ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
 
 
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
 
69
 
70
- ## How to Get Started with the Model
 
71
 
72
- Use the code below to get started with the model.
 
 
 
73
 
74
- [More Information Needed]
 
 
 
 
75
 
76
  ## Training Details
77
 
78
  ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
 
83
 
84
  ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
 
 
92
 
93
  #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
 
 
 
 
 
 
 
102
 
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
 
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
 
126
 
127
  ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
 
141
  ## Environmental Impact
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
 
161
- [More Information Needed]
162
 
163
- #### Hardware
 
164
 
165
- [More Information Needed]
166
 
167
- #### Software
 
 
 
 
 
 
 
168
 
169
- [More Information Needed]
 
170
 
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
3
  tags: []
4
  ---
5
 
6
+ # Model Card for _Qwen2.5-0.5B-Instruct (Fine-Tuned on OpenR1-Math-220k, 2% subset)_
 
 
 
 
7
 
8
  ## Model Details
9
 
10
+ **Model Name**: Qwen2.5-0.5B-Instruct (GRPO Fine-Tuned)
11
+ **Model ID**: `_Qwen2.5-0.5B-R1subset_`
12
+ **License**: [Apache 2.0 / or whichever applies]
13
+ **Finetuned From**: [Qwen/Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct)
14
+ **Language(s)**: English (mathematical text)
15
 
16
+ **Developed By**: Christian Cooper and collaborators
17
+ **Funding**: Self-sponsored
18
+ **Shared By**: Christian Cooper
19
 
20
+ ### Model Description
21
 
22
+ This model is a **Qwen2.5-0.5B** base LLM fine-tuned on a **2% subset** of the [OpenR1-Math-220k](https://huggingface.co/datasets/open-r1/OpenR1-Math-220k) dataset. I used **Group Relative Policy Optimization (GRPO)** from the `trl` library, guiding the model toward producing well-formatted chain-of-thought answers in:
 
 
 
 
 
 
23
 
24
+ ```
25
+ <reasoning>
26
+ ...
27
+ </reasoning>
28
+ <answer>
29
+ ...
30
+ </answer>
31
+ ```
32
 
33
+ It focuses on math reasoning tasks, learning to generate a step-by-step solution (`<reasoning>`) and a numeric or final textual answer (`<answer>`). We incorporate reward functions that encourage correct chain-of-thought structure, numeric answers, and correctness.
34
 
35
+ ### Model Sources
36
+ - **GitHub or Repo**: *[Pending]*
37
+ - **Paper/Demo**: *[Pending]*
38
 
39
  ## Uses
40
 
 
 
41
  ### Direct Use
42
+ - **Math Problem Solving**: The model tries to reason through math word problems, providing step-by-step reasoning and a final answer.
43
 
44
+ ### Downstream Use
45
+ - **Educational Tools**: Potentially used in tutoring or step-by-step solution generation.
46
+ - **Math Chatbots**: A math helper that can respond in a structured `<reasoning>/<answer>` format.
 
 
 
 
 
 
47
 
48
  ### Out-of-Scope Use
49
+ - **High-Stakes Decisions**: Model is not guaranteed to be correct for advanced or critical math scenarios (finance, medical, engineering safety).
50
+ - **Non-English**: Primary training data is English math text, so reliability in other languages is minimal.
 
 
51
 
52
  ## Bias, Risks, and Limitations
53
 
54
+ - **Bias**: Although this is a math-focused dataset, any language model can exhibit unintended biases.
55
+ - **Risks**: The model may produce mathematically incorrect or incomplete solutions. The partial coverage (2% of the dataset) further limits accuracy.
56
+ - **Limitations**:
57
+ - Only partially fine-tuned on 2% of the data, so correctness is not guaranteed.
58
+ - The chain-of-thought is for interpretability but may still contain flawed reasoning or leaps.
59
 
60
+ ## How to Get Started
61
 
62
+ ```python
63
+ from transformers import AutoTokenizer, AutoModelForCausalLM
64
+ import torch
65
 
66
+ model_name = "HarleyCooper/Qwen.5B-OpenR1Math" # Will keep the same name through all % iterations.
67
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
68
+ model = AutoModelForCausalLM.from_pretrained(model_name).to("cuda")
69
 
70
+ prompt = """<reasoning>
71
+ Question: It is known that in a convex $n$-gon ($n>3$) no three diagonals pass through the same point.
72
 
73
+ Find the number of points (distinct from the vertices) of intersection of pairs of diagonals.
74
+ </reasoning>
75
+ <answer>
76
+ """
77
 
78
+ inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
79
+ outputs = model.generate(**inputs, max_new_tokens=2000)
80
+ answer = tokenizer.decode(outputs[0])
81
+ print(answer)
82
+ ```
83
 
84
  ## Training Details
85
 
86
  ### Training Data
87
 
88
+ - **Dataset**: A 2% subsample (~4.4k problems) of [OpenR1-Math-220k](https://huggingface.co/datasets/open-r1/OpenR1-Math-220k).
89
+ - **Data Format**: Each sample has `problem`, `solution`, `answer`. We transform them into:
90
+ - `"prompt"`: A single string containing system instructions + the problem text.
91
+ - `"answer"`: A string with `<reasoning>` + `<answer>` blocks.
92
 
93
  ### Training Procedure
94
 
95
+ - **Framework**: [TRL (v0.4+)](https://github.com/lvwerra/trl) with Group Relative Policy Optimization (GRPO).
96
+ - **Objective**: Reinforcement learning on chain-of-thought format, numeric correctness, and final-answer consistency.
97
+ - **Reward Functions**:
98
+ 1. **`xmlcount_reward_func`**: Encourages `<reasoning>`/`<answer>` structure.
99
+ 2. **`soft_format_reward_func`**: Checks for `<reasoning>.*</reasoning><answer>.*</answer>` in any multiline arrangement.
100
+ 3. **`strict_format_reward_func`**: Strict multiline regex for exact formatting.
101
+ 4. **`int_reward_func`**: Partial reward if the final `<answer>` is purely numeric.
102
+ 5. **`correctness_reward_func`**: Binary reward if the final extracted answer exactly matches the known correct answer.
103
 
104
  #### Training Hyperparameters
105
 
106
+ - **Base Model**: Qwen2.5-0.5B
107
+ - **Learning Rate**: ~5e-6
108
+ - **Batch Size**: 1–2 (due to GPU constraints)
109
+ - **Optimizer**: AdamW (β1=0.9, β2=0.99)
110
+ - **Scheduler**: Cosine with warmup_ratio=0.1
111
+ - **Num Generations**: 16 (GRPO config)
112
+ - **Number of Training Epochs**: 1 epoch on 2% data
113
+ - **Hardware**: Single A100 40GB on Colab
114
+ - **Max Prompt Length**: 256 tokens
115
+ - **Max Completion Length**: 200 tokens
116
+
117
+ ### Speeds, Sizes, Times
118
+ - **Approx. Steps**: ~200–300 steps for 2% subset
119
+ - **Run Time**: Varies from ~1 to 2 hours on Colab A100
120
 
121
  ## Evaluation
122
 
123
+ ### Testing Data
124
+ - Currently trained + tested on the same subset (2%). Next step would be to evaluate on a withheld portion or the full set to measure true correctness.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
125
 
126
+ ### Metrics
127
+ - **Format Rewards**: `xmlcount`, `soft_format`, `strict_format`
128
+ - **Correctness**: Exact match final numeric/string answer
129
+ - **Partial Numeric**: `int_reward_func`
130
 
131
  ### Results
132
+ - The model shows a strong improvement in output format (70–80% format compliance) but relatively low exact numeric correctness. Additional epochs or a larger training fraction are needed for better correctness.
 
 
 
 
 
 
 
 
 
 
 
133
 
134
  ## Environmental Impact
135
 
136
+ - **Hardware**: Single A100 40GB GPU in a Colab environment
137
+ - **Train Time**: ~1–2 hours on 2% data
138
+ - **Carbon Footprint**: Not measured exactly, but minimal compared to large-scale runs
 
 
 
 
 
 
 
 
 
 
 
 
 
 
139
 
140
+ ## Model Architecture & Objective
141
 
142
+ - **Architecture**: Transformer-based causal language model (Qwen2.5-0.5B)
143
+ - **Objective**: RL-based chain-of-thought generation for math reasoning
144
 
145
+ ## Citation
146
 
147
+ ```
148
+ @misc{cooperQwen2.5-0.5B,
149
+ title={Qwen2.5-0.5B Fine-Tuned on OpenR1 (2% subset)},
150
+ author={Christian H. Cooper.},
151
+ howpublished={\url{https://huggingface.co/Christian-cooper-us/Qwen2.5-0.5B-R1subset}},
152
+ year={2025},
153
+ }
154
+ ```
155
 
156
+ ## Contact
157
+ - Maintainers: Christian Cooper (GitHub: [@christian-cooper-us](https://huggingface.co/HarleyCooper)), others.
158
 
159
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
160
 
161
+ **Disclaimer**: This model is experimental, trained on only 2% of the dataset. It may produce inaccurate math solutions and is not suitable for high-stakes or time-sensitive deployments.