import pickle from sklearn.feature_extraction.text import TfidfVectorizer def load_model(model_path): with open(model_path, 'rb') as f: model_data = pickle.load(f) return model_data def predict_answer(question, model_data): vectorizer = model_data['vectorizer'] df = model_data['data'] question_vector = vectorizer.transform([question]) similarity_scores = np.dot(df, question_vector.T).toarray().flatten() best_match_index = np.argmax(similarity_scores) return df.iloc[best_match_index]['คำตอบ'] model_data = load_model('tfidf_model.pkl') response = predict_answer("คำถามของผู้ใช้", model_data) print(response)