Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- zh
|
5 |
+
pipeline_tag: text-classification
|
6 |
+
library_name: transformers
|
7 |
+
---
|
8 |
+
|
9 |
+
# risk-model-zh-v0.1
|
10 |
+
## Introduction
|
11 |
+
This is a BERT model fine-tuned on a high-quality Chinese financial dataset. It generates a security risk score, which helps to identify and remove data with security risks from financial datasets, thereby reducing the proportion of illegal or undesirable data.
|
12 |
+
## Quickstart
|
13 |
+
Here is an example code snippet for generating security risk scores using this model.
|
14 |
+
```python
|
15 |
+
import torch
|
16 |
+
from datasets import load_dataset
|
17 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
18 |
+
|
19 |
+
model_name = "risk-model-zh-v0.1"
|
20 |
+
dataset_file = "your_dataset.jsonl"
|
21 |
+
text_column = "text"
|
22 |
+
output_file = "your_output.jsonl"
|
23 |
+
|
24 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
25 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name, torch_dtype=torch.bfloat16)
|
26 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
27 |
+
model.to(device)
|
28 |
+
|
29 |
+
dataset = load_dataset('json', data_files=dataset_file, cache_dir="cache/", split='train', num_proc=12)
|
30 |
+
|
31 |
+
|
32 |
+
def compute_scores(batch):
|
33 |
+
inputs = tokenizer(batch[text_column], return_tensors="pt", padding="longest", truncation=True).to(device)
|
34 |
+
with torch.no_grad():
|
35 |
+
outputs = model(**inputs)
|
36 |
+
logits = outputs.logits.squeeze(-1).float().cpu().numpy()
|
37 |
+
|
38 |
+
batch["risk_score"] = logits.tolist()
|
39 |
+
return batch
|
40 |
+
|
41 |
+
|
42 |
+
dataset = dataset.map(compute_scores, batched=True, batch_size=512)
|
43 |
+
dataset.to_json(output_file)
|
44 |
+
```
|