Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Model: Llama-3.1-70B-Instruct
|
2 |
+
|
3 |
+
Model ini adalah model instruksi yang telah difinetuned dan dievaluasi untuk menghasilkan catatan, flashcards, dan kuis berdasarkan konten yang diberikan. Model ini menggunakan Hugging Face API dengan fine-grained token untuk mengakses model.
|
4 |
+
|
5 |
+
## Cara Menggunakan Model
|
6 |
+
|
7 |
+
### Python
|
8 |
+
|
9 |
+
Berikut adalah contoh kode Python untuk menggunakan model ini:
|
10 |
+
|
11 |
+
```python
|
12 |
+
from openai import OpenAI
|
13 |
+
from IPython.display import display, Markdown
|
14 |
+
|
15 |
+
client = OpenAI(
|
16 |
+
api_key="hf_xxxxxxxxxxxxxxx", # isi dengan token "FINE GRAINED" huggingface anda!
|
17 |
+
base_url="https://huggingface.co/api/integrations/dgx/v1",
|
18 |
+
)
|
19 |
+
|
20 |
+
# System prompts - pastikan ini sudah didefinisikan
|
21 |
+
notes_prompt = "..." // wajib isi dengan prompt notes yang sudah ditentukan (notes_prompt.txt)
|
22 |
+
flashcards_prompt = "..." // wajib isi dengan prompt flashcards yang sudah ditentukan (flashcards_prompt.txt)
|
23 |
+
quiz_prompt = "..." // wajib isi dengan prompt quiz yang sudah ditentukan (quiz_prompt.txt)
|
24 |
+
content = "..." // isi dengan dokumen yang sudah di ekstrak (PDF, TXT, DOCX)
|
25 |
+
|
26 |
+
|
27 |
+
# 1. Generate notes
|
28 |
+
notes_response = client.chat.completions.create(
|
29 |
+
model="meta-llama/Llama-3.1-70B-Instruct",
|
30 |
+
messages=[
|
31 |
+
{"role": "system", "content": notes_prompt},
|
32 |
+
{"role": "user", "content": content},
|
33 |
+
],
|
34 |
+
temperature=0.3,
|
35 |
+
max_tokens=10_000
|
36 |
+
)
|
37 |
+
|
38 |
+
# Notes response
|
39 |
+
notes_md = notes_response.choices[0].message.content
|
40 |
+
|
41 |
+
# 2. Generate flashcards
|
42 |
+
flashcards_response = client.chat.completions.create(
|
43 |
+
model="meta-llama/Llama-3.1-70B-Instruct",
|
44 |
+
messages=[
|
45 |
+
{"role": "system", "content": flashcards_prompt},
|
46 |
+
{"role": "user", "content": notes_md},
|
47 |
+
],
|
48 |
+
temperature=0.3,
|
49 |
+
max_tokens=1024
|
50 |
+
)
|
51 |
+
|
52 |
+
# flashcards response
|
53 |
+
flashcards_md = flashcards_response.choices[0].message.content
|
54 |
+
|
55 |
+
# 3. Generate quiz
|
56 |
+
quiz_response = client.chat.completions.create(
|
57 |
+
model="meta-llama/Llama-3.1-70B-Instruct",
|
58 |
+
messages=[
|
59 |
+
{"role": "system", "content": quiz_prompt},
|
60 |
+
{"role": "user", "content": notes_md},
|
61 |
+
],
|
62 |
+
temperature=0.3,
|
63 |
+
max_tokens=5048
|
64 |
+
)
|
65 |
+
|
66 |
+
# Quiz response
|
67 |
+
quiz_md = quiz_response.choices[0].message.content
|
68 |
+
|
69 |
+
|
70 |
+
|
71 |
+
print(notes_md)
|
72 |
+
print(flashcards_md)
|
73 |
+
print(quiz_md)
|
74 |
+
```
|
75 |
+
|
76 |
+
### Javascript
|
77 |
+
```javascript
|
78 |
+
import { HfInference } from "@huggingface/inference";
|
79 |
+
|
80 |
+
const client = new HfInference("hf_xxxxxxxxxxxxxxx"); // isi dengan token "FINE GRAINED" huggingface anda!
|
81 |
+
|
82 |
+
// System prompts - pastikan ini sudah didefinisikan
|
83 |
+
const notes_prompt = "..." // wajib isi dengan prompt notes yang sudah ditentukan (notes_prompt.txt)
|
84 |
+
const flashcards_prompt = "..." // wajib isi dengan prompt flashcards yang sudah ditentukan (flashcards_prompt.txt)
|
85 |
+
const quiz_prompt = "..." // wajib isi dengan prompt quiz yang sudah ditentukan (quiz_prompt.txt)
|
86 |
+
const content = "..." // isi dengan dokumen yang sudah di ekstrak (PDF, TXT, DOCX)
|
87 |
+
|
88 |
+
async function generateEducationalContent() {
|
89 |
+
try {
|
90 |
+
// 1. Generate Notes
|
91 |
+
const notesResponse = await client.chatCompletion({
|
92 |
+
model: "meta-llama/Llama-3.1-70B-Instruct",
|
93 |
+
messages: [
|
94 |
+
{ role: "system", content: notes_prompt },
|
95 |
+
{ role: "user", content: content }
|
96 |
+
],
|
97 |
+
temperature: 0.3,
|
98 |
+
max_tokens: 10_000
|
99 |
+
});
|
100 |
+
|
101 |
+
const notesMd = notesResponse.choices[0].message.content;
|
102 |
+
console.log("=== CATATAN ===");
|
103 |
+
console.log(notesMd);
|
104 |
+
|
105 |
+
// 2. Generate Flashcards
|
106 |
+
const flashcardsResponse = await client.chatCompletion({
|
107 |
+
model: "meta-llama/Llama-3.1-70B-Instruct",
|
108 |
+
messages: [
|
109 |
+
{ role: "system", content: flashcards_prompt },
|
110 |
+
{ role: "user", content: notesMd }
|
111 |
+
],
|
112 |
+
temperature: 0.3,
|
113 |
+
max_tokens: 1024
|
114 |
+
});
|
115 |
+
|
116 |
+
const flashcardsMd = flashcardsResponse.choices[0].message.content;
|
117 |
+
console.log("\n=== FLASHCARDS ===");
|
118 |
+
console.log(flashcardsMd);
|
119 |
+
|
120 |
+
// 3. Generate Quiz
|
121 |
+
const quizResponse = await client.chatCompletion({
|
122 |
+
model: "meta-llama/Llama-3.1-70B-Instruct",
|
123 |
+
messages: [
|
124 |
+
{ role: "system", content: quiz_prompt },
|
125 |
+
{ role: "user", content: notesMd }
|
126 |
+
],
|
127 |
+
temperature: 0.3,
|
128 |
+
max_tokens: 5048
|
129 |
+
});
|
130 |
+
|
131 |
+
const quizMd = quizResponse.choices[0].message.content;
|
132 |
+
console.log("\n=== KUIS ===");
|
133 |
+
console.log(quizMd);
|
134 |
+
|
135 |
+
} catch (error) {
|
136 |
+
console.error("Error:", error);
|
137 |
+
}
|
138 |
+
}
|
139 |
+
|
140 |
+
// Eksekusi fungsi utama
|
141 |
+
generateEducationalContent();
|
142 |
+
```
|
143 |
+
|
144 |
+
Pastikan anda menginstall dependency yang diperlukan:
|
145 |
+
```node.js
|
146 |
+
npm install @huggingface/inference
|
147 |
+
```
|
148 |
+
|