File size: 63,358 Bytes
095ad03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
{
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "njb_ProuHiOe"
      },
      "source": [
        "# Q-Learning with FrozenLake-v1 โ›„ and Taxi-v3 ๐Ÿš•\n",
        "\n",
        "<img src=\"https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit3/thumbnail.jpg\" alt=\"Unit 2 Thumbnail\">\n",
        "\n",
        "In this notebook, **you'll code your first Reinforcement Learning agent from scratch** to play FrozenLake โ„๏ธ using Q-Learning, share it with the community, and experiment with different configurations.\n",
        "\n",
        "โฌ‡๏ธ Here is an example of what **you will achieve in just a couple of minutes.** โฌ‡๏ธ\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "vRU_vXBrl1Jx"
      },
      "source": [
        "<img src=\"https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit3/envs.gif\" alt=\"Environments\"/>"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "DPTBOv9HYLZ2"
      },
      "source": [
        "###๐ŸŽฎ Environments:\n",
        "\n",
        "- [FrozenLake-v1](https://gymnasium.farama.org/environments/toy_text/frozen_lake/)\n",
        "- [Taxi-v3](https://gymnasium.farama.org/environments/toy_text/taxi/)\n",
        "\n",
        "###๐Ÿ“š RL-Library:\n",
        "\n",
        "- Python and NumPy\n",
        "- [Gymnasium](https://gymnasium.farama.org/)\n",
        "\n",
        "We're constantly trying to improve our tutorials, so **if you find some issues in this notebook**, please [open an issue on the GitHub Repo](https://github.com/huggingface/deep-rl-class/issues)."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "4i6tjI2tHQ8j"
      },
      "source": [
        "## Objectives of this notebook ๐Ÿ†\n",
        "\n",
        "At the end of the notebook, you will:\n",
        "\n",
        "- Be able to use **Gymnasium**, the environment library.\n",
        "- Be able to code a Q-Learning agent from scratch.\n",
        "- Be able to **push your trained agent and the code to the Hub** with a nice video replay and an evaluation score ๐Ÿ”ฅ.\n",
        "\n",
        "\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "viNzVbVaYvY3"
      },
      "source": [
        "## This notebook is from the Deep Reinforcement Learning Course\n",
        "\n",
        "<img src=\"https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/notebooks/deep-rl-course-illustration.jpg\" alt=\"Deep RL Course illustration\"/>"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "6p5HnEefISCB"
      },
      "source": [
        "In this free course, you will:\n",
        "\n",
        "- ๐Ÿ“– Study Deep Reinforcement Learning in **theory and practice**.\n",
        "- ๐Ÿง‘โ€๐Ÿ’ป Learn to **use famous Deep RL libraries** such as Stable Baselines3, RL Baselines3 Zoo, CleanRL and Sample Factory 2.0.\n",
        "- ๐Ÿค– Train **agents in unique environments**\n",
        "\n",
        "And more check ๐Ÿ“š the syllabus ๐Ÿ‘‰ https://simoninithomas.github.io/deep-rl-course\n",
        "\n",
        "Donโ€™t forget to **<a href=\"http://eepurl.com/ic5ZUD\">sign up to the course</a>** (we are collecting your email to be able toย **send you the links when each Unit is published and give you information about the challenges and updates).**\n",
        "\n",
        "\n",
        "The best way to keep in touch is to join our discord server to exchange with the community and with us ๐Ÿ‘‰๐Ÿป https://discord.gg/ydHrjt3WP5"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "Y-mo_6rXIjRi"
      },
      "source": [
        "## Prerequisites ๐Ÿ—๏ธ\n",
        "\n",
        "Before diving into the notebook, you need to:\n",
        "\n",
        "๐Ÿ”ฒ ๐Ÿ“š **Study [Q-Learning by reading Unit 2](https://huggingface.co/deep-rl-course/unit2/introduction)**  ๐Ÿค—  "
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "f2ONOODsyrMU"
      },
      "source": [
        "## A small recap of Q-Learning"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "V68VveLacfxJ"
      },
      "source": [
        "*Q-Learning* **is the RL algorithm that**:\n",
        "\n",
        "- Trains *Q-Function*, an **action-value function** that encoded, in internal memory, by a *Q-table* **that contains all the state-action pair values.**\n",
        "\n",
        "- Given a state and action, our Q-Function **will search the Q-table for the corresponding value.**\n",
        "    \n",
        "<img src=\"https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit3/Q-function-2.jpg\" alt=\"Q function\"  width=\"100%\"/>\n",
        "\n",
        "- When the training is done,**we have an optimal Q-Function, so an optimal Q-Table.**\n",
        "    \n",
        "- And if we **have an optimal Q-function**, we\n",
        "have an optimal policy, since we **know for, each state, the best action to take.**\n",
        "\n",
        "<img src=\"https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit3/link-value-policy.jpg\" alt=\"Link value policy\"  width=\"100%\"/>\n",
        "\n",
        "\n",
        "But, in the beginning,ย our **Q-Table is useless since it gives arbitrary value for each state-action pairย (most of the time we initialize the Q-Table to 0 values)**. But, as weโ€™llย explore the environment and update our Q-Table it will give us better and better approximations\n",
        "\n",
        "<img src=\"https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/notebooks/unit2/q-learning.jpeg\" alt=\"q-learning.jpeg\" width=\"100%\"/>\n",
        "\n",
        "This is the Q-Learning pseudocode:\n",
        "\n",
        "<img src=\"https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit3/Q-learning-2.jpg\" alt=\"Q-Learning\" width=\"100%\"/>\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "HEtx8Y8MqKfH"
      },
      "source": [
        "# Let's code our first Reinforcement Learning algorithm ๐Ÿš€"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "Kdxb1IhzTn0v"
      },
      "source": [
        "To validate this hands-on for the [certification process](https://huggingface.co/deep-rl-course/en/unit0/introduction#certification-process), you need to push your trained Taxi model to the Hub and **get a result of >= 4.5**.\n",
        "\n",
        "To find your result, go to the [leaderboard](https://huggingface.co/spaces/huggingface-projects/Deep-Reinforcement-Learning-Leaderboard) and find your model, **the result = mean_reward - std of reward**\n",
        "\n",
        "For more information about the certification process, check this section ๐Ÿ‘‰ https://huggingface.co/deep-rl-course/en/unit0/introduction#certification-process"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "4gpxC1_kqUYe"
      },
      "source": [
        "## Install dependencies and create a virtual display ๐Ÿ”ฝ\n",
        "\n",
        "In the notebook, we'll need to generate a replay video. To do so, with Colab, **we need to have a virtual screen to render the environment** (and thus record the frames).\n",
        "\n",
        "Hence the following cell will install the libraries and create and run a virtual screen ๐Ÿ–ฅ\n",
        "\n",
        "Weโ€™ll install multiple ones:\n",
        "\n",
        "- `gymnasium`: Contains the FrozenLake-v1 โ›„ and Taxi-v3 ๐Ÿš• environments.\n",
        "- `pygame`: Used for the FrozenLake-v1 and Taxi-v3 UI.\n",
        "- `numpy`: Used for handling our Q-table.\n",
        "\n",
        "The Hugging Face Hub ๐Ÿค— works as a central place where anyone can share and explore models and datasets. It has versioning, metrics, visualizations and other features that will allow you to easily collaborate with others.\n",
        "\n",
        "You can see here all the Deep RL models available (if they use Q Learning) here ๐Ÿ‘‰ https://huggingface.co/models?other=q-learning"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "9XaULfDZDvrC"
      },
      "outputs": [],
      "source": [
        "!pip install -r https://raw.githubusercontent.com/huggingface/deep-rl-class/main/notebooks/unit2/requirements-unit2.txt"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "n71uTX7qqzz2"
      },
      "outputs": [],
      "source": [
        "!sudo apt-get update\n",
        "!sudo apt-get install -y python3-opengl\n",
        "!apt install ffmpeg xvfb\n",
        "!pip3 install pyvirtualdisplay"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "K6XC13pTfFiD"
      },
      "source": [
        "To make sure the new installed libraries are used, **sometimes it's required to restart the notebook runtime**. The next cell will force the **runtime to crash, so you'll need to connect again and run the code starting from here**. Thanks to this trick, **we will be able to run our virtual screen.**"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "3kuZbWAkfHdg"
      },
      "outputs": [],
      "source": [
        "import os\n",
        "os.kill(os.getpid(), 9)"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "DaY1N4dBrabi"
      },
      "outputs": [],
      "source": [
        "# Virtual display\n",
        "from pyvirtualdisplay import Display\n",
        "\n",
        "virtual_display = Display(visible=0, size=(1400, 900))\n",
        "virtual_display.start()"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "W-7f-Swax_9x"
      },
      "source": [
        "## Import the packages ๐Ÿ“ฆ\n",
        "\n",
        "In addition to the installed libraries, we also use:\n",
        "\n",
        "- `random`: To generate random numbers (that will be useful for epsilon-greedy policy).\n",
        "- `imageio`: To generate a replay video."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "VcNvOAQlysBJ"
      },
      "outputs": [],
      "source": [
        "import numpy as np\n",
        "import gymnasium as gym\n",
        "import random\n",
        "import imageio\n",
        "import os\n",
        "import tqdm\n",
        "\n",
        "import pickle5 as pickle\n",
        "from tqdm.notebook import tqdm"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "xp4-bXKIy1mQ"
      },
      "source": [
        "We're now ready to code our Q-Learning algorithm ๐Ÿ”ฅ"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "xya49aNJWVvv"
      },
      "source": [
        "# Part 1: Frozen Lake โ›„ (non slippery version)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "NAvihuHdy9tw"
      },
      "source": [
        "## Create and understand [FrozenLake environment โ›„]((https://gymnasium.farama.org/environments/toy_text/frozen_lake/)\n",
        "---\n",
        "\n",
        "๐Ÿ’ก A good habit when you start to use an environment is to check its documentation\n",
        "\n",
        "๐Ÿ‘‰ https://gymnasium.farama.org/environments/toy_text/frozen_lake/\n",
        "\n",
        "---\n",
        "\n",
        "We're going to train our Q-Learning agent **to navigate from the starting state (S) to the goal state (G) by walking only on frozen tiles (F) and avoid holes (H)**.\n",
        "\n",
        "We can have two sizes of environment:\n",
        "\n",
        "- `map_name=\"4x4\"`: a 4x4 grid version\n",
        "- `map_name=\"8x8\"`: a 8x8 grid version\n",
        "\n",
        "\n",
        "The environment has two modes:\n",
        "\n",
        "- `is_slippery=False`: The agent always moves **in the intended direction** due to the non-slippery nature of the frozen lake (deterministic).\n",
        "- `is_slippery=True`: The agent **may not always move in the intended direction** due to the slippery nature of the frozen lake (stochastic)."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "UaW_LHfS0PY2"
      },
      "source": [
        "For now let's keep it simple with the 4x4 map and non-slippery.\n",
        "We add a parameter called `render_mode` that specifies how the environment should be visualised. In our case because we **want to record a video of the environment at the end, we need to set render_mode to rgb_array**.\n",
        "\n",
        "As [explained in the documentation](https://gymnasium.farama.org/api/env/#gymnasium.Env.render) โ€œrgb_arrayโ€: Return a single frame representing the current state of the environment. A frame is a np.ndarray with shape (x, y, 3) representing RGB values for an x-by-y pixel image."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "IzJnb8O3y8up"
      },
      "outputs": [],
      "source": [
        "# Create the FrozenLake-v1 environment using 4x4 map and non-slippery version and render_mode=\"rgb_array\"\n",
        "env = gym.make() # TODO use the correct parameters"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "Ji_UrI5l2zzn"
      },
      "source": [
        "### Solution"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "jNxUbPMP0akP"
      },
      "outputs": [],
      "source": [
        "env = gym.make(\"FrozenLake-v1\", map_name=\"4x4\", is_slippery=False, render_mode=\"rgb_array\")"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "KASNViqL4tZn"
      },
      "source": [
        "You can create your own custom grid like this:\n",
        "\n",
        "```python\n",
        "desc=[\"SFFF\", \"FHFH\", \"FFFH\", \"HFFG\"]\n",
        "gym.make('FrozenLake-v1', desc=desc, is_slippery=True)\n",
        "```\n",
        "\n",
        "but we'll use the default environment for now."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "SXbTfdeJ1Xi9"
      },
      "source": [
        "### Let's see what the Environment looks like:\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "ZNPG0g_UGCfh"
      },
      "outputs": [],
      "source": [
        "# We create our environment with gym.make(\"<name_of_the_environment>\")- `is_slippery=False`: The agent always moves in the intended direction due to the non-slippery nature of the frozen lake (deterministic).\n",
        "print(\"_____OBSERVATION SPACE_____ \\n\")\n",
        "print(\"Observation Space\", env.observation_space)\n",
        "print(\"Sample observation\", env.observation_space.sample()) # Get a random observation"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "2MXc15qFE0M9"
      },
      "source": [
        "We see with `Observation Space Shape Discrete(16)` that the observation is an integer representing the **agentโ€™s current position as current_row * ncols + current_col (where both the row and col start at 0)**.\n",
        "\n",
        "For example, the goal position in the 4x4 map can be calculated as follows: 3 * 4 + 3 = 15. The number of possible observations is dependent on the size of the map. **For example, the 4x4 map has 16 possible observations.**\n",
        "\n",
        "\n",
        "For instance, this is what state = 0 looks like:\n",
        "\n",
        "<img src=\"https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/notebooks/unit2/frozenlake.png\" alt=\"FrozenLake\">"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "We5WqOBGLoSm"
      },
      "outputs": [],
      "source": [
        "print(\"\\n _____ACTION SPACE_____ \\n\")\n",
        "print(\"Action Space Shape\", env.action_space.n)\n",
        "print(\"Action Space Sample\", env.action_space.sample()) # Take a random action"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "MyxXwkI2Magx"
      },
      "source": [
        "The action space (the set of possible actions the agent can take) is discrete with 4 actions available ๐ŸŽฎ:\n",
        "- 0: GO LEFT\n",
        "- 1: GO DOWN\n",
        "- 2: GO RIGHT\n",
        "- 3: GO UP\n",
        "\n",
        "Reward function ๐Ÿ’ฐ:\n",
        "- Reach goal: +1\n",
        "- Reach hole: 0\n",
        "- Reach frozen: 0"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "1pFhWblk3Awr"
      },
      "source": [
        "## Create and Initialize the Q-table ๐Ÿ—„๏ธ\n",
        "\n",
        "(๐Ÿ‘€ Step 1 of the pseudocode)\n",
        "\n",
        "<img src=\"https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit3/Q-learning-2.jpg\" alt=\"Q-Learning\" width=\"100%\"/>\n",
        "\n",
        "\n",
        "It's time to initialize our Q-table! To know how many rows (states) and columns (actions) to use, we need to know the action and observation space. We already know their values from before, but we'll want to obtain them programmatically so that our algorithm generalizes for different environments. Gym provides us a way to do that: `env.action_space.n` and `env.observation_space.n`\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "y3ZCdluj3k0l"
      },
      "outputs": [],
      "source": [
        "state_space =\n",
        "print(\"There are \", state_space, \" possible states\")\n",
        "\n",
        "action_space =\n",
        "print(\"There are \", action_space, \" possible actions\")"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "rCddoOXM3UQH"
      },
      "outputs": [],
      "source": [
        "# Let's create our Qtable of size (state_space, action_space) and initialized each values at 0 using np.zeros. np.zeros needs a tuple (a,b)\n",
        "def initialize_q_table(state_space, action_space):\n",
        "  Qtable =\n",
        "  return Qtable"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "9YfvrqRt3jdR"
      },
      "outputs": [],
      "source": [
        "Qtable_frozenlake = initialize_q_table(state_space, action_space)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "67OdoKL63eDD"
      },
      "source": [
        "### Solution"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "HuTKv3th3ohG"
      },
      "outputs": [],
      "source": [
        "state_space = env.observation_space.n\n",
        "print(\"There are \", state_space, \" possible states\")\n",
        "\n",
        "action_space = env.action_space.n\n",
        "print(\"There are \", action_space, \" possible actions\")"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "lnrb_nX33fJo"
      },
      "outputs": [],
      "source": [
        "# Let's create our Qtable of size (state_space, action_space) and initialized each values at 0 using np.zeros\n",
        "def initialize_q_table(state_space, action_space):\n",
        "  Qtable = np.zeros((state_space, action_space))\n",
        "  return Qtable"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "Y0WlgkVO3Jf9"
      },
      "outputs": [],
      "source": [
        "Qtable_frozenlake = initialize_q_table(state_space, action_space)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "Atll4Z774gri"
      },
      "source": [
        "## Define the greedy policy ๐Ÿค–\n",
        "\n",
        "Remember we have two policies since Q-Learning is an **off-policy** algorithm. This means we're using a **different policy for acting and updating the value function**.\n",
        "\n",
        "- Epsilon-greedy policy (acting policy)\n",
        "- Greedy-policy (updating policy)\n",
        "\n",
        "The greedy policy will also be the final policy we'll have when the Q-learning agent completes training. The greedy policy is used to select an action using the Q-table.\n",
        "\n",
        "<img src=\"https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit3/off-on-4.jpg\" alt=\"Q-Learning\" width=\"100%\"/>\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "E3SCLmLX5bWG"
      },
      "outputs": [],
      "source": [
        "def greedy_policy(Qtable, state):\n",
        "  # Exploitation: take the action with the highest state, action value\n",
        "  action =\n",
        "\n",
        "  return action"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "B2_-8b8z5k54"
      },
      "source": [
        "#### Solution"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "se2OzWGW5kYJ"
      },
      "outputs": [],
      "source": [
        "def greedy_policy(Qtable, state):\n",
        "  # Exploitation: take the action with the highest state, action value\n",
        "  action = np.argmax(Qtable[state][:])\n",
        "\n",
        "  return action"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "flILKhBU3yZ7"
      },
      "source": [
        "##Define the epsilon-greedy policy ๐Ÿค–\n",
        "\n",
        "Epsilon-greedy is the training policy that handles the exploration/exploitation trade-off.\n",
        "\n",
        "The idea with epsilon-greedy:\n",
        "\n",
        "- With *probability 1โ€Š-โ€Šษ›* : **we do exploitation** (i.e. our agent selects the action with the highest state-action pair value).\n",
        "\n",
        "- With *probability ษ›*: we do **exploration** (trying a random action).\n",
        "\n",
        "As the training continues, we progressively **reduce the epsilon value since we will need less and less exploration and more exploitation.**\n",
        "\n",
        "<img src=\"https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit3/Q-learning-4.jpg\" alt=\"Q-Learning\" width=\"100%\"/>\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "6Bj7x3in3_Pq"
      },
      "outputs": [],
      "source": [
        "def epsilon_greedy_policy(Qtable, state, epsilon):\n",
        "  # Randomly generate a number between 0 and 1\n",
        "  random_num =\n",
        "  # if random_num > greater than epsilon --> exploitation\n",
        "  if random_num > epsilon:\n",
        "    # Take the action with the highest value given a state\n",
        "    # np.argmax can be useful here\n",
        "    action =\n",
        "  # else --> exploration\n",
        "  else:\n",
        "    action = # Take a random action\n",
        "\n",
        "  return action"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "8R5ej1fS4P2V"
      },
      "source": [
        "#### Solution"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "cYxHuckr4LiG"
      },
      "outputs": [],
      "source": [
        "def epsilon_greedy_policy(Qtable, state, epsilon):\n",
        "  # Randomly generate a number between 0 and 1\n",
        "  random_num = random.uniform(0,1)\n",
        "  # if random_num > greater than epsilon --> exploitation\n",
        "  if random_num > epsilon:\n",
        "    # Take the action with the highest value given a state\n",
        "    # np.argmax can be useful here\n",
        "    action = greedy_policy(Qtable, state)\n",
        "  # else --> exploration\n",
        "  else:\n",
        "    action = env.action_space.sample()\n",
        "\n",
        "  return action"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "hW80DealcRtu"
      },
      "source": [
        "## Define the hyperparameters โš™๏ธ\n",
        "\n",
        "The exploration related hyperparamters are some of the most important ones.\n",
        "\n",
        "- We need to make sure that our agent **explores enough of the state space** to learn a good value approximation. To do that, we need to have progressive decay of the epsilon.\n",
        "- If you decrease epsilon too fast (too high decay_rate), **you take the risk that your agent will be stuck**, since your agent didn't explore enough of the state space and hence can't solve the problem."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "Y1tWn0tycWZ1"
      },
      "outputs": [],
      "source": [
        "# Training parameters\n",
        "n_training_episodes = 10000  # Total training episodes\n",
        "learning_rate = 0.7          # Learning rate\n",
        "\n",
        "# Evaluation parameters\n",
        "n_eval_episodes = 100        # Total number of test episodes\n",
        "\n",
        "# Environment parameters\n",
        "env_id = \"FrozenLake-v1\"     # Name of the environment\n",
        "max_steps = 99               # Max steps per episode\n",
        "gamma = 0.95                 # Discounting rate\n",
        "eval_seed = []               # The evaluation seed of the environment\n",
        "\n",
        "# Exploration parameters\n",
        "max_epsilon = 1.0             # Exploration probability at start\n",
        "min_epsilon = 0.05            # Minimum exploration probability\n",
        "decay_rate = 0.0005            # Exponential decay rate for exploration prob"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "cDb7Tdx8atfL"
      },
      "source": [
        "## Create the training loop method\n",
        "\n",
        "<img src=\"https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit3/Q-learning-2.jpg\" alt=\"Q-Learning\" width=\"100%\"/>\n",
        "\n",
        "The training loop goes like this:\n",
        "\n",
        "```\n",
        "For episode in the total of training episodes:\n",
        "\n",
        "Reduce epsilon (since we need less and less exploration)\n",
        "Reset the environment\n",
        "\n",
        "  For step in max timesteps:    \n",
        "    Choose the action At using epsilon greedy policy\n",
        "    Take the action (a) and observe the outcome state(s') and reward (r)\n",
        "    Update the Q-value Q(s,a) using Bellman equation Q(s,a) + lr [R(s,a) + gamma * max Q(s',a') - Q(s,a)]\n",
        "    If done, finish the episode\n",
        "    Our next state is the new state\n",
        "```"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "paOynXy3aoJW"
      },
      "outputs": [],
      "source": [
        "def train(n_training_episodes, min_epsilon, max_epsilon, decay_rate, env, max_steps, Qtable):\n",
        "  for episode in tqdm(range(n_training_episodes)):\n",
        "    # Reduce epsilon (because we need less and less exploration)\n",
        "    epsilon = min_epsilon + (max_epsilon - min_epsilon)*np.exp(-decay_rate*episode)\n",
        "    # Reset the environment\n",
        "    state, info = env.reset()\n",
        "    step = 0\n",
        "    terminated = False\n",
        "    truncated = False\n",
        "\n",
        "    # repeat\n",
        "    for step in range(max_steps):\n",
        "      # Choose the action At using epsilon greedy policy\n",
        "      action =\n",
        "\n",
        "      # Take action At and observe Rt+1 and St+1\n",
        "      # Take the action (a) and observe the outcome state(s') and reward (r)\n",
        "      new_state, reward, terminated, truncated, info =\n",
        "\n",
        "      # Update Q(s,a):= Q(s,a) + lr [R(s,a) + gamma * max Q(s',a') - Q(s,a)]\n",
        "      Qtable[state][action] =\n",
        "\n",
        "      # If terminated or truncated finish the episode\n",
        "      if terminated or truncated:\n",
        "        break\n",
        "\n",
        "      # Our next state is the new state\n",
        "      state = new_state\n",
        "  return Qtable"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "Pnpk2ePoem3r"
      },
      "source": [
        "#### Solution"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "IyZaYbUAeolw"
      },
      "outputs": [],
      "source": [
        "def train(n_training_episodes, min_epsilon, max_epsilon, decay_rate, env, max_steps, Qtable):\n",
        "  for episode in tqdm(range(n_training_episodes)):\n",
        "    # Reduce epsilon (because we need less and less exploration)\n",
        "    epsilon = min_epsilon + (max_epsilon - min_epsilon)*np.exp(-decay_rate*episode)\n",
        "    # Reset the environment\n",
        "    state, info = env.reset()\n",
        "    step = 0\n",
        "    terminated = False\n",
        "    truncated = False\n",
        "\n",
        "    # repeat\n",
        "    for step in range(max_steps):\n",
        "      # Choose the action At using epsilon greedy policy\n",
        "      action = epsilon_greedy_policy(Qtable, state, epsilon)\n",
        "\n",
        "      # Take action At and observe Rt+1 and St+1\n",
        "      # Take the action (a) and observe the outcome state(s') and reward (r)\n",
        "      new_state, reward, terminated, truncated, info = env.step(action)\n",
        "\n",
        "      # Update Q(s,a):= Q(s,a) + lr [R(s,a) + gamma * max Q(s',a') - Q(s,a)]\n",
        "      Qtable[state][action] = Qtable[state][action] + learning_rate * (reward + gamma * np.max(Qtable[new_state]) - Qtable[state][action])\n",
        "\n",
        "      # If terminated or truncated finish the episode\n",
        "      if terminated or truncated:\n",
        "        break\n",
        "\n",
        "      # Our next state is the new state\n",
        "      state = new_state\n",
        "  return Qtable"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "WLwKQ4tUdhGI"
      },
      "source": [
        "## Train the Q-Learning agent ๐Ÿƒ"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "DPBxfjJdTCOH"
      },
      "outputs": [],
      "source": [
        "Qtable_frozenlake = train(n_training_episodes, min_epsilon, max_epsilon, decay_rate, env, max_steps, Qtable_frozenlake)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "yVeEhUCrc30L"
      },
      "source": [
        "## Let's see what our Q-Learning table looks like now ๐Ÿ‘€"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "nmfchsTITw4q"
      },
      "outputs": [],
      "source": [
        "Qtable_frozenlake"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "pUrWkxsHccXD"
      },
      "source": [
        "## The evaluation method ๐Ÿ“\n",
        "\n",
        "- We defined the evaluation method that we're going to use to test our Q-Learning agent."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "jNl0_JO2cbkm"
      },
      "outputs": [],
      "source": [
        "def evaluate_agent(env, max_steps, n_eval_episodes, Q, seed):\n",
        "  \"\"\"\n",
        "  Evaluate the agent for ``n_eval_episodes`` episodes and returns average reward and std of reward.\n",
        "  :param env: The evaluation environment\n",
        "  :param max_steps: Maximum number of steps per episode\n",
        "  :param n_eval_episodes: Number of episode to evaluate the agent\n",
        "  :param Q: The Q-table\n",
        "  :param seed: The evaluation seed array (for taxi-v3)\n",
        "  \"\"\"\n",
        "  episode_rewards = []\n",
        "  for episode in tqdm(range(n_eval_episodes)):\n",
        "    if seed:\n",
        "      state, info = env.reset(seed=seed[episode])\n",
        "    else:\n",
        "      state, info = env.reset()\n",
        "    step = 0\n",
        "    truncated = False\n",
        "    terminated = False\n",
        "    total_rewards_ep = 0\n",
        "\n",
        "    for step in range(max_steps):\n",
        "      # Take the action (index) that have the maximum expected future reward given that state\n",
        "      action = greedy_policy(Q, state)\n",
        "      new_state, reward, terminated, truncated, info = env.step(action)\n",
        "      total_rewards_ep += reward\n",
        "\n",
        "      if terminated or truncated:\n",
        "        break\n",
        "      state = new_state\n",
        "    episode_rewards.append(total_rewards_ep)\n",
        "  mean_reward = np.mean(episode_rewards)\n",
        "  std_reward = np.std(episode_rewards)\n",
        "\n",
        "  return mean_reward, std_reward"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "0jJqjaoAnxUo"
      },
      "source": [
        "## Evaluate our Q-Learning agent ๐Ÿ“ˆ\n",
        "\n",
        "- Usually, you should have a mean reward of 1.0\n",
        "- The **environment is relatively easy** since the state space is really small (16). What you can try to do is [to replace it with the slippery version](https://gymnasium.farama.org/environments/toy_text/frozen_lake/), which introduces stochasticity, making the environment more complex."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "fAgB7s0HEFMm"
      },
      "outputs": [],
      "source": [
        "# Evaluate our Agent\n",
        "mean_reward, std_reward = evaluate_agent(env, max_steps, n_eval_episodes, Qtable_frozenlake, eval_seed)\n",
        "print(f\"Mean_reward={mean_reward:.2f} +/- {std_reward:.2f}\")"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "yxaP3bPdg1DV"
      },
      "source": [
        "## Publish our trained model to the Hub ๐Ÿ”ฅ\n",
        "\n",
        "Now that we saw good results after the training, **we can publish our trained model to the Hub ๐Ÿค— with one line of code**.\n",
        "\n",
        "Here's an example of a Model Card:\n",
        "\n",
        "<img src=\"https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/notebooks/unit2/modelcard.png\" alt=\"Model card\" width=\"100%\"/>\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "kv0k1JQjpMq3"
      },
      "source": [
        "Under the hood, the Hub uses git-based repositories (don't worry if you don't know what git is), which means you can update the model with new versions as you experiment and improve your agent."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "QZ5LrR-joIHD"
      },
      "source": [
        "#### Do not modify this code"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "Jex3i9lZ8ksX"
      },
      "outputs": [],
      "source": [
        "from huggingface_hub import HfApi, snapshot_download\n",
        "from huggingface_hub.repocard import metadata_eval_result, metadata_save\n",
        "\n",
        "from pathlib import Path\n",
        "import datetime\n",
        "import json"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "Qo57HBn3W74O"
      },
      "outputs": [],
      "source": [
        "def record_video(env, Qtable, out_directory, fps=1):\n",
        "  \"\"\"\n",
        "  Generate a replay video of the agent\n",
        "  :param env\n",
        "  :param Qtable: Qtable of our agent\n",
        "  :param out_directory\n",
        "  :param fps: how many frame per seconds (with taxi-v3 and frozenlake-v1 we use 1)\n",
        "  \"\"\"\n",
        "  images = []\n",
        "  terminated = False\n",
        "  truncated = False\n",
        "  state, info = env.reset(seed=random.randint(0,500))\n",
        "  img = env.render()\n",
        "  images.append(img)\n",
        "  while not terminated or truncated:\n",
        "    # Take the action (index) that have the maximum expected future reward given that state\n",
        "    action = np.argmax(Qtable[state][:])\n",
        "    state, reward, terminated, truncated, info = env.step(action) # We directly put next_state = state for recording logic\n",
        "    img = env.render()\n",
        "    images.append(img)\n",
        "  imageio.mimsave(out_directory, [np.array(img) for i, img in enumerate(images)], fps=fps)"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "U4mdUTKkGnUd"
      },
      "outputs": [],
      "source": [
        "def push_to_hub(\n",
        "    repo_id, model, env, video_fps=1, local_repo_path=\"hub\"\n",
        "):\n",
        "    \"\"\"\n",
        "    Evaluate, Generate a video and Upload a model to Hugging Face Hub.\n",
        "    This method does the complete pipeline:\n",
        "    - It evaluates the model\n",
        "    - It generates the model card\n",
        "    - It generates a replay video of the agent\n",
        "    - It pushes everything to the Hub\n",
        "\n",
        "    :param repo_id: repo_id: id of the model repository from the Hugging Face Hub\n",
        "    :param env\n",
        "    :param video_fps: how many frame per seconds to record our video replay\n",
        "    (with taxi-v3 and frozenlake-v1 we use 1)\n",
        "    :param local_repo_path: where the local repository is\n",
        "    \"\"\"\n",
        "    _, repo_name = repo_id.split(\"/\")\n",
        "\n",
        "    eval_env = env\n",
        "    api = HfApi()\n",
        "\n",
        "    # Step 1: Create the repo\n",
        "    repo_url = api.create_repo(\n",
        "        repo_id=repo_id,\n",
        "        exist_ok=True,\n",
        "    )\n",
        "\n",
        "    # Step 2: Download files\n",
        "    repo_local_path = Path(snapshot_download(repo_id=repo_id))\n",
        "\n",
        "    # Step 3: Save the model\n",
        "    if env.spec.kwargs.get(\"map_name\"):\n",
        "        model[\"map_name\"] = env.spec.kwargs.get(\"map_name\")\n",
        "        if env.spec.kwargs.get(\"is_slippery\", \"\") == False:\n",
        "            model[\"slippery\"] = False\n",
        "\n",
        "    # Pickle the model\n",
        "    with open((repo_local_path) / \"q-learning.pkl\", \"wb\") as f:\n",
        "        pickle.dump(model, f)\n",
        "\n",
        "    # Step 4: Evaluate the model and build JSON with evaluation metrics\n",
        "    mean_reward, std_reward = evaluate_agent(\n",
        "        eval_env, model[\"max_steps\"], model[\"n_eval_episodes\"], model[\"qtable\"], model[\"eval_seed\"]\n",
        "    )\n",
        "\n",
        "    evaluate_data = {\n",
        "        \"env_id\": model[\"env_id\"],\n",
        "        \"mean_reward\": mean_reward,\n",
        "        \"n_eval_episodes\": model[\"n_eval_episodes\"],\n",
        "        \"eval_datetime\": datetime.datetime.now().isoformat()\n",
        "    }\n",
        "\n",
        "    # Write a JSON file called \"results.json\" that will contain the\n",
        "    # evaluation results\n",
        "    with open(repo_local_path / \"results.json\", \"w\") as outfile:\n",
        "        json.dump(evaluate_data, outfile)\n",
        "\n",
        "    # Step 5: Create the model card\n",
        "    env_name = model[\"env_id\"]\n",
        "    if env.spec.kwargs.get(\"map_name\"):\n",
        "        env_name += \"-\" + env.spec.kwargs.get(\"map_name\")\n",
        "\n",
        "    if env.spec.kwargs.get(\"is_slippery\", \"\") == False:\n",
        "        env_name += \"-\" + \"no_slippery\"\n",
        "\n",
        "    metadata = {}\n",
        "    metadata[\"tags\"] = [env_name, \"q-learning\", \"reinforcement-learning\", \"custom-implementation\"]\n",
        "\n",
        "    # Add metrics\n",
        "    eval = metadata_eval_result(\n",
        "        model_pretty_name=repo_name,\n",
        "        task_pretty_name=\"reinforcement-learning\",\n",
        "        task_id=\"reinforcement-learning\",\n",
        "        metrics_pretty_name=\"mean_reward\",\n",
        "        metrics_id=\"mean_reward\",\n",
        "        metrics_value=f\"{mean_reward:.2f} +/- {std_reward:.2f}\",\n",
        "        dataset_pretty_name=env_name,\n",
        "        dataset_id=env_name,\n",
        "    )\n",
        "\n",
        "    # Merges both dictionaries\n",
        "    metadata = {**metadata, **eval}\n",
        "\n",
        "    model_card = f\"\"\"\n",
        "  # **Q-Learning** Agent playing1 **{env_id}**\n",
        "  This is a trained model of a **Q-Learning** agent playing **{env_id}** .\n",
        "\n",
        "  ## Usage\n",
        "\n",
        "  ```python\n",
        "\n",
        "  model = load_from_hub(repo_id=\"{repo_id}\", filename=\"q-learning.pkl\")\n",
        "\n",
        "  # Don't forget to check if you need to add additional attributes (is_slippery=False etc)\n",
        "  env = gym.make(model[\"env_id\"])\n",
        "  ```\n",
        "  \"\"\"\n",
        "\n",
        "    evaluate_agent(env, model[\"max_steps\"], model[\"n_eval_episodes\"], model[\"qtable\"], model[\"eval_seed\"])\n",
        "\n",
        "    readme_path = repo_local_path / \"README.md\"\n",
        "    readme = \"\"\n",
        "    print(readme_path.exists())\n",
        "    if readme_path.exists():\n",
        "        with readme_path.open(\"r\", encoding=\"utf8\") as f:\n",
        "            readme = f.read()\n",
        "    else:\n",
        "        readme = model_card\n",
        "\n",
        "    with readme_path.open(\"w\", encoding=\"utf-8\") as f:\n",
        "        f.write(readme)\n",
        "\n",
        "    # Save our metrics to Readme metadata\n",
        "    metadata_save(readme_path, metadata)\n",
        "\n",
        "    # Step 6: Record a video\n",
        "    video_path = repo_local_path / \"replay.mp4\"\n",
        "    record_video(env, model[\"qtable\"], video_path, video_fps)\n",
        "\n",
        "    # Step 7. Push everything to the Hub\n",
        "    api.upload_folder(\n",
        "        repo_id=repo_id,\n",
        "        folder_path=repo_local_path,\n",
        "        path_in_repo=\".\",\n",
        "    )\n",
        "\n",
        "    print(\"Your model is pushed to the Hub. You can view your model here: \", repo_url)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "81J6cet_ogSS"
      },
      "source": [
        "### .\n",
        "\n",
        "By using `push_to_hub` **you evaluate, record a replay, generate a model card of your agent and push it to the Hub**.\n",
        "\n",
        "This way:\n",
        "- You can **showcase our work** ๐Ÿ”ฅ\n",
        "- You can **visualize your agent playing** ๐Ÿ‘€\n",
        "- You can **share an agent with the community that others can use** ๐Ÿ’พ\n",
        "- You can **access a leaderboard ๐Ÿ† to see how well your agent is performing compared to your classmates** ๐Ÿ‘‰ https://huggingface.co/spaces/huggingface-projects/Deep-Reinforcement-Learning-Leaderboard\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "cWnFC0iZooTw"
      },
      "source": [
        "To be able to share your model with the community there are three more steps to follow:\n",
        "\n",
        "1๏ธโƒฃ (If it's not already done) create an account to HF โžก https://huggingface.co/join\n",
        "\n",
        "2๏ธโƒฃ Sign in and then, you need to store your authentication token from the Hugging Face website.\n",
        "- Create a new token (https://huggingface.co/settings/tokens) **with write role**\n",
        "\n",
        "\n",
        "<img src=\"https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/notebooks/create-token.jpg\" alt=\"Create HF Token\">\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "QB5nIcxR8paT"
      },
      "outputs": [],
      "source": [
        "from huggingface_hub import notebook_login\n",
        "notebook_login()"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "GyWc1x3-o3xG"
      },
      "source": [
        "If you don't want to use a Google Colab or a Jupyter Notebook, you need to use this command instead: `huggingface-cli login` (or `login`)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "Gc5AfUeFo3xH"
      },
      "source": [
        "3๏ธโƒฃ We're now ready to push our trained agent to the ๐Ÿค— Hub ๐Ÿ”ฅ using `push_to_hub()` function\n",
        "\n",
        "- Let's create **the model dictionary that contains the hyperparameters and the Q_table**."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "FiMqxqVHg0I4"
      },
      "outputs": [],
      "source": [
        "model = {\n",
        "    \"env_id\": env_id,\n",
        "    \"max_steps\": max_steps,\n",
        "    \"n_training_episodes\": n_training_episodes,\n",
        "    \"n_eval_episodes\": n_eval_episodes,\n",
        "    \"eval_seed\": eval_seed,\n",
        "\n",
        "    \"learning_rate\": learning_rate,\n",
        "    \"gamma\": gamma,\n",
        "\n",
        "    \"max_epsilon\": max_epsilon,\n",
        "    \"min_epsilon\": min_epsilon,\n",
        "    \"decay_rate\": decay_rate,\n",
        "\n",
        "    \"qtable\": Qtable_frozenlake\n",
        "}"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "9kld-AEso3xH"
      },
      "source": [
        "Let's fill the `push_to_hub` function:\n",
        "\n",
        "- `repo_id`: the name of the Hugging Face Hub Repository that will be created/updated `\n",
        "(repo_id = {username}/{repo_name})`\n",
        "๐Ÿ’ก A good `repo_id` is `{username}/q-{env_id}`\n",
        "- `model`: our model dictionary containing the hyperparameters and the Qtable.\n",
        "- `env`: the environment.\n",
        "- `commit_message`: message of the commit"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "5sBo2umnXpPd"
      },
      "outputs": [],
      "source": [
        "model"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "RpOTtSt83kPZ"
      },
      "outputs": [],
      "source": [
        "username = \"\" # FILL THIS\n",
        "repo_name = \"q-FrozenLake-v1-4x4-noSlippery\"\n",
        "push_to_hub(\n",
        "    repo_id=f\"{username}/{repo_name}\",\n",
        "    model=model,\n",
        "    env=env)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "E2875IGsprzq"
      },
      "source": [
        "Congrats ๐Ÿฅณ you've just implemented from scratch, trained, and uploaded your first Reinforcement Learning agent.\n",
        "FrozenLake-v1 no_slippery is very simple environment, let's try a harder one ๐Ÿ”ฅ."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "18lN8Bz7yvLt"
      },
      "source": [
        "# Part 2: Taxi-v3 ๐Ÿš–\n",
        "\n",
        "## Create and understand [Taxi-v3 ๐Ÿš•](https://gymnasium.farama.org/environments/toy_text/taxi/)\n",
        "---\n",
        "\n",
        "๐Ÿ’ก A good habit when you start to use an environment is to check its documentation\n",
        "\n",
        "๐Ÿ‘‰ https://gymnasium.farama.org/environments/toy_text/taxi/\n",
        "\n",
        "---\n",
        "\n",
        "In `Taxi-v3` ๐Ÿš•, there are four designated locations in the grid world indicated by R(ed), G(reen), Y(ellow), and B(lue).\n",
        "\n",
        "When the episode starts, **the taxi starts off at a random square** and the passenger is at a random location. The taxi drives to the passengerโ€™s location, **picks up the passenger**, drives to the passengerโ€™s destination (another one of the four specified locations), and then **drops off the passenger**. Once the passenger is dropped off, the episode ends.\n",
        "\n",
        "\n",
        "<img src=\"https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/notebooks/unit2/taxi.png\" alt=\"Taxi\">\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "gL0wpeO8gpej"
      },
      "outputs": [],
      "source": [
        "env = gym.make(\"Taxi-v3\", render_mode=\"rgb_array\")"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "gBOaXgtsrmtT"
      },
      "source": [
        "There are **500 discrete states since there are 25 taxi positions, 5 possible locations of the passenger** (including the case when the passenger is in the taxi), and **4 destination locations.**\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "_TPNaGSZrgqA"
      },
      "outputs": [],
      "source": [
        "state_space = env.observation_space.n\n",
        "print(\"There are \", state_space, \" possible states\")"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "CdeeZuokrhit"
      },
      "outputs": [],
      "source": [
        "action_space = env.action_space.n\n",
        "print(\"There are \", action_space, \" possible actions\")"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "R1r50Advrh5Q"
      },
      "source": [
        "The action space (the set of possible actions the agent can take) is discrete with **6 actions available ๐ŸŽฎ**:\n",
        "\n",
        "- 0: move south\n",
        "- 1: move north\n",
        "- 2: move east\n",
        "- 3: move west\n",
        "- 4: pickup passenger\n",
        "- 5: drop off passenger\n",
        "\n",
        "Reward function ๐Ÿ’ฐ:\n",
        "\n",
        "- -1 per step unless other reward is triggered.\n",
        "- +20 delivering passenger.\n",
        "- -10 executing โ€œpickupโ€ and โ€œdrop-offโ€ actions illegally."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "US3yDXnEtY9I"
      },
      "outputs": [],
      "source": [
        "# Create our Q table with state_size rows and action_size columns (500x6)\n",
        "Qtable_taxi = initialize_q_table(state_space, action_space)\n",
        "print(Qtable_taxi)\n",
        "print(\"Q-table shape: \", Qtable_taxi .shape)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "gUMKPH0_LJyH"
      },
      "source": [
        "## Define the hyperparameters โš™๏ธ\n",
        "\n",
        "โš  DO NOT MODIFY EVAL_SEED: the eval_seed array **allows us to evaluate your agent with the same taxi starting positions for every classmate**"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "AB6n__hhg7YS"
      },
      "outputs": [],
      "source": [
        "# Training parameters\n",
        "n_training_episodes = 25000   # Total training episodes\n",
        "learning_rate = 0.7           # Learning rate\n",
        "\n",
        "# Evaluation parameters\n",
        "n_eval_episodes = 100        # Total number of test episodes\n",
        "\n",
        "# DO NOT MODIFY EVAL_SEED\n",
        "eval_seed = [16,54,165,177,191,191,120,80,149,178,48,38,6,125,174,73,50,172,100,148,146,6,25,40,68,148,49,167,9,97,164,176,61,7,54,55,\n",
        " 161,131,184,51,170,12,120,113,95,126,51,98,36,135,54,82,45,95,89,59,95,124,9,113,58,85,51,134,121,169,105,21,30,11,50,65,12,43,82,145,152,97,106,55,31,85,38,\n",
        " 112,102,168,123,97,21,83,158,26,80,63,5,81,32,11,28,148] # Evaluation seed, this ensures that all classmates agents are trained on the same taxi starting position\n",
        "                                                          # Each seed has a specific starting state\n",
        "\n",
        "# Environment parameters\n",
        "env_id = \"Taxi-v3\"           # Name of the environment\n",
        "max_steps = 99               # Max steps per episode\n",
        "gamma = 0.95                 # Discounting rate\n",
        "\n",
        "# Exploration parameters\n",
        "max_epsilon = 1.0             # Exploration probability at start\n",
        "min_epsilon = 0.05           # Minimum exploration probability\n",
        "decay_rate = 0.005            # Exponential decay rate for exploration prob\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "1TMORo1VLTsX"
      },
      "source": [
        "## Train our Q-Learning agent ๐Ÿƒ"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "WwP3Y2z2eS-K"
      },
      "outputs": [],
      "source": [
        "Qtable_taxi = train(n_training_episodes, min_epsilon, max_epsilon, decay_rate, env, max_steps, Qtable_taxi)\n",
        "Qtable_taxi"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "wPdu0SueLVl2"
      },
      "source": [
        "## Create a model dictionary ๐Ÿ’พ and publish our trained model to the Hub ๐Ÿ”ฅ\n",
        "\n",
        "- We create a model dictionary that will contain all the training hyperparameters for reproducibility and the Q-Table.\n"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "0a1FpE_3hNYr"
      },
      "outputs": [],
      "source": [
        "model = {\n",
        "    \"env_id\": env_id,\n",
        "    \"max_steps\": max_steps,\n",
        "    \"n_training_episodes\": n_training_episodes,\n",
        "    \"n_eval_episodes\": n_eval_episodes,\n",
        "    \"eval_seed\": eval_seed,\n",
        "\n",
        "    \"learning_rate\": learning_rate,\n",
        "    \"gamma\": gamma,\n",
        "\n",
        "    \"max_epsilon\": max_epsilon,\n",
        "    \"min_epsilon\": min_epsilon,\n",
        "    \"decay_rate\": decay_rate,\n",
        "\n",
        "    \"qtable\": Qtable_taxi\n",
        "}"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "dhQtiQozhOn1"
      },
      "outputs": [],
      "source": [
        "username = \"\" # FILL THIS\n",
        "repo_name = \"\" # FILL THIS\n",
        "push_to_hub(\n",
        "    repo_id=f\"{username}/{repo_name}\",\n",
        "    model=model,\n",
        "    env=env)"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "ZgSdjgbIpRti"
      },
      "source": [
        "Now that it's on the Hub, you can compare the results of your Taxi-v3 with your classmates using the leaderboard ๐Ÿ† ๐Ÿ‘‰ https://huggingface.co/spaces/huggingface-projects/Deep-Reinforcement-Learning-Leaderboard\n",
        "\n",
        "\n",
        "<img src=\"https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/notebooks/unit2/taxi-leaderboard.png\" alt=\"Taxi Leaderboard\">"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "bzgIO70c0bu2"
      },
      "source": [
        "# Part 3: Load from Hub ๐Ÿ”ฝ\n",
        "\n",
        "What's amazing with Hugging Face Hub ๐Ÿค— is that you can easily load powerful models from the community.\n",
        "\n",
        "Loading a saved model from the Hub is really easy:\n",
        "\n",
        "1. You go https://huggingface.co/models?other=q-learning to see the list of all the q-learning saved models.\n",
        "2. You select one and copy its repo_id\n",
        "\n",
        "<img src=\"https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/notebooks/unit2/copy-id.png\" alt=\"Copy id\">"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "gTth6thRoC6X"
      },
      "source": [
        "3. Then we just need to use `load_from_hub` with:\n",
        "- The repo_id\n",
        "- The filename: the saved model inside the repo."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "EtrfoTaBoNrd"
      },
      "source": [
        "#### Do not modify this code"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "Eo8qEzNtCaVI"
      },
      "outputs": [],
      "source": [
        "from urllib.error import HTTPError\n",
        "\n",
        "from huggingface_hub import hf_hub_download\n",
        "\n",
        "\n",
        "def load_from_hub(repo_id: str, filename: str) -> str:\n",
        "    \"\"\"\n",
        "    Download a model from Hugging Face Hub.\n",
        "    :param repo_id: id of the model repository from the Hugging Face Hub\n",
        "    :param filename: name of the model zip file from the repository\n",
        "    \"\"\"\n",
        "    # Get the model from the Hub, download and cache the model on your local disk\n",
        "    pickle_model = hf_hub_download(\n",
        "        repo_id=repo_id,\n",
        "        filename=filename\n",
        "    )\n",
        "\n",
        "    with open(pickle_model, 'rb') as f:\n",
        "      downloaded_model_file = pickle.load(f)\n",
        "\n",
        "    return downloaded_model_file"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "b_sM2gNioPZH"
      },
      "source": [
        "### ."
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "JUm9lz2gCQcU"
      },
      "outputs": [],
      "source": [
        "model = load_from_hub(repo_id=\"Gyaneshere/toy-taxi\", filename=\"q-learning.pkl\") # Try to use another model\n",
        "\n",
        "print(model)\n",
        "env = gym.make(model[\"env_id\"])\n",
        "\n",
        "evaluate_agent(env, model[\"max_steps\"], model[\"n_eval_episodes\"], model[\"qtable\"], model[\"eval_seed\"])"
      ]
    },
    {
      "cell_type": "code",
      "execution_count": null,
      "metadata": {
        "id": "O7pL8rg1MulN"
      },
      "outputs": [],
      "source": [
        "model = load_from_hub(repo_id=\"Gyaneshere/q-FrozenLake-v1-4x4-noSlippery\", filename=\"q-learning.pkl\") # Try to use another model\n",
        "\n",
        "env = gym.make(model[\"env_id\"], is_slippery=False)\n",
        "\n",
        "evaluate_agent(env, model[\"max_steps\"], model[\"n_eval_episodes\"], model[\"qtable\"], model[\"eval_seed\"])"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "BQAwLnYFPk-s"
      },
      "source": [
        "## Some additional challenges ๐Ÿ†\n",
        "\n",
        "The best way to learn **is to try things on your own**! As you saw, the current agent is not doing great. As a first suggestion, you can train for more steps. With 1,000,000 steps, we saw some great results!\n",
        "\n",
        "In the [Leaderboard](https://huggingface.co/spaces/huggingface-projects/Deep-Reinforcement-Learning-Leaderboard) you will find your agents. Can you get to the top?\n",
        "\n",
        "Here are some ideas to climb up the leaderboard:\n",
        "\n",
        "* Train more steps\n",
        "* Try different hyperparameters by looking at what your classmates have done.\n",
        "* **Push your new trained model** on the Hub ๐Ÿ”ฅ\n",
        "\n",
        "Are walking on ice and driving taxis too boring to you? Try to **change the environment**, why not use FrozenLake-v1 slippery version? Check how they work [using the gymnasium documentation](https://gymnasium.farama.org/) and have fun ๐ŸŽ‰."
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "p-fW-EU5WejJ"
      },
      "source": [
        "_____________________________________________________________________\n",
        "Congrats ๐Ÿฅณ, you've just implemented, trained, and uploaded your first Reinforcement Learning agent.\n",
        "\n",
        "Understanding Q-Learning is an **important step to understanding value-based methods.**\n",
        "\n",
        "In the next Unit with Deep Q-Learning, we'll see that while creating and updating a Q-table was a good strategy โ€” **however, it is not scalable.**\n",
        "\n",
        "For instance, imagine you create an agent that learns to play Doom.\n",
        "\n",
        "<img src=\"https://vizdoom.cs.put.edu.pl/user/pages/01.tutorial/basic.png\" alt=\"Doom\"/>\n",
        "\n",
        "Doom is a large environment with a huge state space (millions of different states). Creating and updating a Q-table for that environment would not be efficient.\n",
        "\n",
        "That's why we'll study Deep Q-Learning in the next unit, an algorithm **where we use a neural network that approximates, given a state, the different Q-values for each action.**\n",
        "\n",
        "<img src=\"https://huggingface.co/datasets/huggingface-deep-rl-course/course-images/resolve/main/en/unit4/atari-envs.gif\" alt=\"Environments\"/>\n"
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "BjLhT70TEZIn"
      },
      "source": [
        "See you in Unit 3! ๐Ÿ”ฅ\n",
        "\n",
        "## Keep learning, stay awesome ๐Ÿค—"
      ]
    }
  ],
  "metadata": {
    "colab": {
      "collapsed_sections": [
        "67OdoKL63eDD",
        "B2_-8b8z5k54",
        "8R5ej1fS4P2V",
        "Pnpk2ePoem3r"
      ],
      "private_outputs": true,
      "provenance": []
    },
    "gpuClass": "standard",
    "kernelspec": {
      "display_name": "Python 3",
      "name": "python3"
    },
    "language_info": {
      "name": "python"
    }
  },
  "nbformat": 4,
  "nbformat_minor": 0
}