Gyaneshere commited on
Commit
3172ddf
·
verified ·
1 Parent(s): 0e4ebca

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 232.56 +/- 47.39
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 261.42 +/- 16.66
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a3db29058a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a3db2905940>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a3db29059e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a3db2905a80>", "_build": "<function ActorCriticPolicy._build at 0x7a3db2905b20>", "forward": "<function ActorCriticPolicy.forward at 0x7a3db2905bc0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a3db2905c60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a3db2905d00>", "_predict": "<function ActorCriticPolicy._predict at 0x7a3db2905da0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a3db2905e40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a3db2905ee0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a3db2905f80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a3db2a61b00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1738682924303755204, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAM2JdD125hQ9jl17vYvwlb6FSfS7l6wAvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVLwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGRdygf2bqMAWyUTfwBjAF0lEdAoTJh8OTaCnV9lChoBkdAb1FpztCzC2gHTR8BaAhHQKEzgb6xgRd1fZQoaAZHQHF/qm0mdAhoB00iAWgIR0ChNIIe5nUUdX2UKGgGR0BxRrbFjurqaAdNKwFoCEdAoTYCyIHkcXV9lChoBkdAbYy6y0KJEmgHTUcBaAhHQKE29JL/S6V1fZQoaAZHQG0cXt8eCCloB00WAWgIR0ChN7yTQmeEdX2UKGgGR0ATNOP/7zkIaAdL2mgIR0ChOPJfQa73dX2UKGgGR0BxR49nscABaAdNdgFoCEdAoToDR+jM3nV9lChoBkdAY8lBAv+OwWgHTegDaAhHQKE9cUahpQF1fZQoaAZHQGC8zHsC1Z1oB03oA2gIR0ChQOmSIP9UdX2UKGgGR0Bt+GvfTCtSaAdNUQFoCEdAoUHgVbiZOXV9lChoBkdAcCHENvwVkGgHTe4BaAhHQKFD1S/CZWt1fZQoaAZHQHIITGtITXdoB00AAmgIR0ChRUJp35erdX2UKGgGR0Bs5xsj3VTaaAdNKAFoCEdAoUarCSA6MnV9lChoBkdAcGnNiH6/I2gHTS4BaAhHQKFHg1qFh5R1fZQoaAZHQHBQQiFCb+doB01UAWgIR0ChSJz5O8CgdX2UKGgGR0BvnT/yXlbNaAdNXAFoCEdAoUnaKFZgX3V9lChoBkdAcjQCl7+kxmgHTVwBaAhHQKFMCBiCrcV1fZQoaAZHQG93xNh3JPtoB00yAWgIR0ChTUEiD/VBdX2UKGgGR0BNENC7btZ3aAdL52gIR0ChTetp/PPcdX2UKGgGR0BzhuIUJv5yaAdNmAFoCEdAoU+eiUPhAHV9lChoBkdAa+HaA4GUwGgHTTEBaAhHQKFQc5GSZBt1fZQoaAZHQEhpStNi6QNoB0vjaAhHQKFRF2Pkq+d1fZQoaAZHQG+XkmhM8HRoB00mAWgIR0ChUn8qWkaddX2UKGgGR0BviYcebNKRaAdNEQFoCEdAoVNTdFfAsXV9lChoBkdAbhUXMyJsPGgHTQgBaAhHQKFUFHFPznR1fZQoaAZHQGTzwAlv60poB03oA2gIR0ChV3yrgflqdX2UKGgGR0By6U9wFTvRaAdNvQFoCEdAoViuhoM8YHV9lChoBkdAcXfuPFNtZWgHTSIBaAhHQKFaEu8scyZ1fZQoaAZHQEW3rhzeXRhoB0voaAhHQKFatCJoCdV1fZQoaAZHQCJxSNwR5C5oB0v3aAhHQKFbZjmSyMV1fZQoaAZHQG7NIOhCdBloB00jAWgIR0ChXMnxSYPYdX2UKGgGR0BxvsU9IPK/aAdNMAFoCEdAoV2k83dbgXV9lChoBkdAbqBAC4jKPmgHTYIBaAhHQKFesSElE7Z1fZQoaAZHQHCxqDsdDIBoB02nAWgIR0ChYHvkili0dX2UKGgGR0AZpKaoddVvaAdL5GgIR0ChYSZs0pEydX2UKGgGR0Bw0WkgwGnoaAdNQAFoCEdAoWJLYsd1dXV9lChoBkdAS5qr92ovSWgHS/5oCEdAoWMr9wWFe3V9lChoBkdAOVrKeTV2BGgHS/JoCEdAoWTn91loUXV9lChoBkdAcb8g88s+V2gHTZABaAhHQKFmgkxh2GJ1fZQoaAZHQFOOX2M85jpoB0vmaAhHQKFnOV4X40x1fZQoaAZHQHGsVLeyiVVoB01wAWgIR0ChaNxBVuJldX2UKGgGR0Bskwl6Z6UraAdNOQFoCEdAoWm0PH1e0HV9lChoBkdAcCc4IKMNt2gHTUABaAhHQKFqlzxwyZd1fZQoaAZHQHBlvYBeXzFoB00wAWgIR0ChbAqHoHLSdX2UKGgGR0Byne4axX4kaAdNJgJoCEdAoW2NWluWKXV9lChoBkdAcBZi7kGRm2gHTS8BaAhHQKFuatvn8sN1fZQoaAZHQG1fk87p3X9oB00OAWgIR0Chb8e8oQWfdX2UKGgGR0BxLqzyBkI5aAdNJQFoCEdAoXCcN8VpK3V9lChoBkdAcO9R+BpYcWgHS/1oCEdAoXFV8qnWKHV9lChoBkdAbIYH1vl2eWgHTbEBaAhHQKFzLVn27Ft1fZQoaAZHQHIZdvKlpGpoB000AmgIR0ChdLkeyRjjdX2UKGgGR0Buyf2K2rn1aAdN6gFoCEdAoXa1N34bj3V9lChoBkdAb+af8MuvlmgHTdMBaAhHQKF4Cj6eoUB1fZQoaAZHQHEVH8GcFyJoB014AWgIR0CheRYlhPTHdX2UKGgGR0Bxa/WlMyrQaAdNTAFoCEdAoXqjG1hLG3V9lChoBkdAcHjq/M4cWGgHTZsCaAhHQKF9BJwKjSJ1fZQoaAZHQHDVe9Ba9sdoB01PAWgIR0ChfxnNX5nEdX2UKGgGR0BHZNKyv9tNaAdL6WgIR0ChgAwcPvrodX2UKGgGR0A2q863iJfqaAdL/mgIR0ChgMueBg/kdX2UKGgGR0ByDXFDOTq0aAdNdgFoCEdAoYJtjG1hLHV9lChoBkdAcgi/zreImGgHTSwBaAhHQKGDTsdkrgB1fZQoaAZHQGdtpsO5J9RoB03oA2gIR0Chhsxzq8lHdX2UKGgGR0BxZWrFOwgUaAdN3AFoCEdAoYgcWsRxtHV9lChoBkdAcB8vMKTjemgHTRUBaAhHQKGJhWSU1Q91fZQoaAZHQHE9YWgvlEJoB00bAWgIR0Chil/qX4TLdX2UKGgGR0BwJXied07saAdNIwFoCEdAoYs/bh3qzXV9lChoBkdAb0dFRYRuj2gHTSQBaAhHQKGMDyeZof11fZQoaAZHQGAPqiXY151oB03oA2gIR0Chj4SeZof0dX2UKGgGR0BuOAsd1dPdaAdNJgFoCEdAoZD+Y+jdpXV9lChoBkdAbe36FdszmGgHTZEBaAhHQKGSKoG6f8N1fZQoaAZHQG8w+qaPS2JoB00qAWgIR0ChkwUF0PpZdX2UKGgGR0BDWpL/S6UaaAdL6GgIR0ChlFwSamXPdX2UKGgGR0BKIJ+DvmYCaAdL7mgIR0ChlT9yLhrFdX2UKGgGR0BGEfJ3gUDdaAdL4GgIR0ChlgWXb/OudX2UKGgGR0Brp/bItDlYaAdNNQFoCEdAoZcjiwSrYHV9lChoBkdAcmpj6vaDf2gHTUYBaAhHQKGZUn2qT8p1fZQoaAZHQE6tgZ0jkdVoB0viaAhHQKGZ8R/3Fkx1fZQoaAZHQHJMFgYxcmloB01SAWgIR0Chmt7JwKjSdX2UKGgGR0BwNIBT4tYkaAdNQgFoCEdAoZxgqqfe13V9lChoBkdAbxqqU/wAl2gHTS0BaAhHQKGdPKDkELZ1fZQoaAZHQHGouR5kbxVoB00XAWgIR0ChngER8MNMdX2UKGgGR0A5iEC/47A+aAdL+mgIR0ChnquctoSMdX2UKGgGR0Bta+Dxsl9jaAdNSAFoCEdAoaA1Li++NHV9lChoBkdAcD3WrOqvNmgHTSIBaAhHQKGhAIP9UCJ1fZQoaAZHQGNrvhAGB4FoB03oA2gIR0ChpGs6zVtodX2UKGgGR0BvNGY4Qz1saAdNJAFoCEdAoaU5Ktga33V9lChoBkdAQc5dUsFt9GgHS9BoCEdAoaXR8lXzUnV9lChoBkdAcamNRWLgoGgHTR8BaAhHQKGnPP0I1Lt1fZQoaAZHQEtBRekYXO5oB0vXaAhHQKGn3YoRZlp1fZQoaAZHQG61uxjawlloB01dAmgIR0ChqYlXiiqRdX2UKGgGR0BxFspKBd2QaAdNQwFoCEdAoasXYg7o0XV9lChoBkdAcSz/0NBnjGgHTW8BaAhHQKGsJQ/oq1B1fZQoaAZHQHG9a/20zCVoB02HAWgIR0ChrhRXwLE2dX2UKGgGR0BvTAJokAxSaAdNZQFoCEdAoa9Of/WDpXV9lChoBkdAcBU1iONo8WgHTRwBaAhHQKGwWsFt8/l1fZQoaAZHQHGRPluFYdRoB01ZAWgIR0ChsbeRHPNWdX2UKGgGR0Bp8LUZvUBoaAdNVwFoCEdAobNv0NBnjHV9lChoBkdAQYE5IYm9hGgHS/RoCEdAobQfYL9deXV9lChoBkdANRt8Rcu8LGgHS9ZoCEdAobS0Syt3fXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4692, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.11.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu124", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7be3094cc360>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7be3094cc400>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7be3094cc4a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7be3094cc540>", "_build": "<function ActorCriticPolicy._build at 0x7be3094cc5e0>", "forward": "<function ActorCriticPolicy.forward at 0x7be3094cc680>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7be3094cc720>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7be3094cc7c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7be3094cc860>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7be3094cc900>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7be3094cc9a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7be3094cca40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7be309451580>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1738736835366582485, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAID/G71k1rc91rYHPhmmgb4D5Cu3/nurPQAAAAAAAAAAzYESvRSytz8ev0W+rAQZvhf0kjzw2le9AAAAAAAAAADNIne8ibizPxoXib2Uqo++x3heOzrei7wAAAAAAAAAADq4qz4M6wk/JZaSvsKDcb7k3bU9Ek45vQAAAAAAAAAAzV4wPOVPsD8Erbg+x9ABvxiBB7yoQ7e8AAAAAAAAAAAacDY9B7NbP7XXuby9JrW+m2D5PINVF70AAAAAAAAAAM18ajvXYyM40/2ivQulC77GfVa90P0MPwAAgD8AAAAApsixPeEIoj/47S8/5JMPv0F2Zry+8W09AAAAAAAAAADzruM9xv++PwkhEz8SqEu91NDdvWZ/Rr0AAAAAAAAAAA2xwT3sUdq5aDNPszN7Yy65CKG7iYu2MwAAgD8AAIA/c2bNvRIEEz6AMyI9TZUxvu4C/rwo26Y7AAAAAAAAAACN+a890W4HPjxGAL6mCVm+es7DvBxTFb0AAAAAAAAAAMClgb0FiQk/xyPEPGsoqr4/Z6K9bTicPQAAAAAAAAAA2m+BPaiSl7z6HhY9sPG7PB0SCb7eZZM9AACAPwAAgD8aAgY9NywiPuhb6z2gOxy+KtCnPUXrez0AAAAAAAAAAObJGr17qpc+tq+VvXnXaL4F/229+mIuvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHK2jtw71ZmMAWyUTVQBjAF0lEdAkTOR60IC2nV9lChoBkdAcPyWRigCfmgHTSABaAhHQJEzqpbUwzt1fZQoaAZHQG3GOdXko4NoB00bAWgIR0CRNNRF7UobdX2UKGgGR0BxsOnuRcNZaAdNRwFoCEdAkTTavRqoInV9lChoBkdAcLOqVhTfi2gHTXoBaAhHQJE1M34sVcl1fZQoaAZHQG7e+QEIPbxoB00eAWgIR0CRNhjeKsMidX2UKGgGR0ByfGZhKDkEaAdNJwFoCEdAkTZKmTC+DnV9lChoBkdAblufseGO/GgHTRcBaAhHQJE5UJC0F8p1fZQoaAZHQHFV/io86mxoB00xAWgIR0CROamShakidX2UKGgGR0ByEkx0uDjBaAdNHwFoCEdAkTnUiliz9nV9lChoBkdAcV2BInSfDmgHTQkBaAhHQJE6quA7Ppp1fZQoaAZHQHEb9AgPmPpoB01WAWgIR0CROxGecx0udX2UKGgGR0BtXpkqc3ERaAdNHAFoCEdAkTsxA0Kqn3V9lChoBkdAbEajeKsMiWgHTSEBaAhHQJE7ZvUBnzx1fZQoaAZHQHHUq0dBBzFoB00ZAWgIR0CRO7TzND+jdX2UKGgGR0Bw1TCUHIIXaAdNPgFoCEdAkTvEmdAgPnV9lChoBkdAQ+t0tAcDKmgHS+poCEdAkTvErK/203V9lChoBkdAcCAEfT1CgWgHTToBaAhHQJE7zUMG5c11fZQoaAZHQG3le9rXUYtoB01EAWgIR0CRPJn6VMVUdX2UKGgGR0ByIxVZLZi/aAdNAgFoCEdAkTym4uscQ3V9lChoBkdAckYosqaw2WgHTUQBaAhHQJE9uAqd6LR1fZQoaAZHQHGG9jTa0yBoB004AWgIR0CRPsEh7mdRdX2UKGgGR0Bx4tdX1anraAdNWwFoCEdAkT/zz/ZM+XV9lChoBkdAbpt4s3AEdWgHS/loCEdAkUB/fsNUfnV9lChoBkdAcOJMr3CbdGgHTR4BaAhHQJFBTLNfPX11fZQoaAZHQHFSASFoL5RoB0v3aAhHQJFBqmEXcg11fZQoaAZHQHF5IFaB7NVoB00jAWgIR0CRQqmLLpzLdX2UKGgGR0BvS9NtZV4paAdNGwFoCEdAkUK6kAPuonV9lChoBkdAcDAi0fHPvGgHTSUBaAhHQJFDohxHXmN1fZQoaAZHQGuhustCiRJoB00rAWgIR0CRQ9TVUdaMdX2UKGgGR0Br7e801qFiaAdNNQFoCEdAkUQrYbsF+3V9lChoBkdAckiKQaJhv2gHTUIBaAhHQJFEfzbvgFZ1fZQoaAZHQHJWGQ8wHqxoB00pAWgIR0CRRQm65Gz9dX2UKGgGR0BwI4Q5FPSEaAdNbQFoCEdAkUXDuSfUWnV9lChoBkdAbFaZ7XxvvWgHTRABaAhHQJFGEvHtF8Z1fZQoaAZHQHFEJVbRne1oB01GAWgIR0CRRiViF0xNdX2UKGgGR0BxRdLBbfP5aAdNvgFoCEdAkUcasU7CBXV9lChoBkdAcUFOsDGLk2gHTRoBaAhHQJFLQi3XqaB1fZQoaAZHQHGlppi7TUloB00FAWgIR0CRTHnb7CSBdX2UKGgGR0BxkLfUF0PpaAdNLQFoCEdAkUzNQbdadXV9lChoBkdAbp7sMy8BdWgHTWcBaAhHQJFM3VjI7vJ1fZQoaAZHQHAYFaW5Yo1oB02bAWgIR0CRTTwCKaXsdX2UKGgGR0BwaFCx/ustaAdNIQFoCEdAkU2hnezlcXV9lChoBkdAcqhd1uBMBmgHTWoBaAhHQJFNtzhgmZ51fZQoaAZHQHAgpbMX7+FoB00HAWgIR0CRTcuTA31jdX2UKGgGR0BvPQ0j1PFeaAdNIAFoCEdAkWDAbZOBUnV9lChoBkdAbdOsH0K7ZmgHTRQBaAhHQJFhcyrPt2N1fZQoaAZHQG+y2FnIyTJoB00XAWgIR0CRYjIFNcnmdX2UKGgGR0Bx52CvovBaaAdNUgFoCEdAkWJpU1hsqXV9lChoBkdAbc4wN9YwI2gHTSUBaAhHQJFioAJb+tN1fZQoaAZHQHMHeqBEroZoB01VAWgIR0CRYr/O+qR2dX2UKGgGR0BxMQNTcZccaAdNJgFoCEdAkWNiUC7sfXV9lChoBkdAcAHoQnQY12gHTWcBaAhHQJFj8rtmcvx1fZQoaAZHQHFsdWMju8doB00GAWgIR0CRZfVbRne0dX2UKGgGR0BxOkO/cnE3aAdNNAFoCEdAkWaVijL0SXV9lChoBkdAcjnqp97Wu2gHTQ8BaAhHQJFmtFOO8011fZQoaAZHQHIi7eANG3FoB00oAWgIR0CRZyUMoc7ydX2UKGgGR0Bx/RhNM496aAdNIAFoCEdAkWehu89Oh3V9lChoBkdAcmlqTbFju2gHTT8BaAhHQJFn4OSW7e51fZQoaAZHQG+Mwgkka/BoB00rAWgIR0CRZ+gRsdkrdX2UKGgGR0Bs2JYzSCvpaAdNCgFoCEdAkWfn7+DODHV9lChoBkdAcm6y/sVtXWgHTSgBaAhHQJFpWS2Yv391fZQoaAZHQHDIqnJkoWpoB01oAWgIR0CRaXisXBP9dX2UKGgGR0ByrUfHPu5SaAdNEgFoCEdAkWmLP6be/HV9lChoBkdAcYjOYYzi0mgHTRgBaAhHQJFqFJHy3Ct1fZQoaAZHQHIYcvh60IFoB00wAWgIR0CRanQTmGM5dX2UKGgGR0Bywjl5nlGPaAdNEQFoCEdAkWtI5HVf/nV9lChoBkdAck7FKCg9NmgHTTcBaAhHQJFrr7gsK9h1fZQoaAZHQG1pRHPNVzZoB01UAWgIR0CRa7uOCGvfdX2UKGgGR0AtUOOsDGLlaAdL9GgIR0CRbQjLjghsdX2UKGgGR0BvDW2d/axpaAdNHQFoCEdAkW2i39aUzXV9lChoBkdAcHSK77Kq42gHTQoBaAhHQJFuPAKv3al1fZQoaAZHQD8YfA9FF2FoB0v+aAhHQJFulUzbeuV1fZQoaAZHQHDHjlkpZwJoB00KAWgIR0CRbu9DQZ4wdX2UKGgGR0BxbjayrxRVaAdNNAFoCEdAkW79IClrM3V9lChoBkdAbolw84gieWgHTRoBaAhHQJFvHNB4Uvh1fZQoaAZHQHJxIXO4XoFoB00cAWgIR0CRb2BNVR1pdX2UKGgGR0Bw1yDHwPRRaAdNKQFoCEdAkXFBSYPXkHV9lChoBkdAcr8FUADJVGgHTSkBaAhHQJFxTzcynDR1fZQoaAZHQHG0nta6jFhoB00+AWgIR0CRcbrc0tROdX2UKGgGR0BsmTdpItlJaAdNBAFoCEdAkXKmp6yB1HV9lChoBkdAcfCUxmCiAWgHTQcBaAhHQJFyyH1vl2h1fZQoaAZHQHKF7O/tY0VoB01LAWgIR0CRc06q814xdX2UKGgGR0Bx96KZUkv9aAdNNwFoCEdAkXOqv3ai9XV9lChoBkdAchk4o7V8TmgHTWsBaAhHQJFzvbcoH9p1fZQoaAZHQHEegpF1B+poB00wAWgIR0CRdVEJBw+/dX2UKGgGR0Byb+3PRiPRaAdNLQFoCEdAkXXc5S3sonV9lChoBkdAcIS5gPVd5mgHTRwBaAhHQJF2Bfb9If91fZQoaAZHQHD6qXrt3OhoB00TAWgIR0CRdpFiKBNFdX2UKGgGR0BwCIwfyPMjaAdNJwFoCEdAkXa4UFjd6HV9lChoBkdAbCdXp4bCJ2gHTSMBaAhHQJF2+FGoaUB1fZQoaAZHQHJm3UDuBtloB005AWgIR0CRd8zDn/1hdX2UKGgGR0BvCCsfaHsUaAdNSAFoCEdAkXjDKLbYb3V9lChoBkdAcbMGTcIqsmgHTRABaAhHQJF5eDVYp2F1fZQoaAZHQHECTvNNahZoB00eAWgIR0CReqAWSEDhdX2UKGgGR0BswbGNrCWNaAdNMgFoCEdAkXzW+0w8GXV9lChoBkdAbIhR51Ng0GgHTS8BaAhHQJF87cGkep51fZQoaAZHQG+U93KSxJNoB01oAWgIR0CRfQNucc2jdX2UKGgGR0BvoviaRZEEaAdNIwFoCEdAkX0y925hB3V9lChoBkdAcOfHXmNipmgHTR8BaAhHQJF9hLdvbXZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.11.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu124", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:355d1524ebf5847ad8f7836d185a3674d7b8ff9af2af4b8b4c4dda50489f4b9a
3
- size 147450
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7c331c1657679d365dcd0506a9e7e023f4ef530f6afd61a15d56a40f57357c6c
3
+ size 148128
ppo-LunarLander-v2/data CHANGED
@@ -4,54 +4,54 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7a3db29058a0>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a3db2905940>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a3db29059e0>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a3db2905a80>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7a3db2905b20>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7a3db2905bc0>",
13
- "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a3db2905c60>",
14
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a3db2905d00>",
15
- "_predict": "<function ActorCriticPolicy._predict at 0x7a3db2905da0>",
16
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a3db2905e40>",
17
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a3db2905ee0>",
18
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a3db2905f80>",
19
  "__abstractmethods__": "frozenset()",
20
- "_abc_impl": "<_abc._abc_data object at 0x7a3db2a61b00>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
- "num_timesteps": 1000448,
25
  "_total_timesteps": 1000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
- "start_time": 1738682924303755204,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
- ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAM2JdD125hQ9jl17vYvwlb6FSfS7l6wAvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
38
- ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
39
  },
40
  "_last_original_obs": null,
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
- "_current_progress_remaining": -0.00044800000000000395,
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
- ":serialized:": "gAWVLwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHGRdygf2bqMAWyUTfwBjAF0lEdAoTJh8OTaCnV9lChoBkdAb1FpztCzC2gHTR8BaAhHQKEzgb6xgRd1fZQoaAZHQHF/qm0mdAhoB00iAWgIR0ChNIIe5nUUdX2UKGgGR0BxRrbFjurqaAdNKwFoCEdAoTYCyIHkcXV9lChoBkdAbYy6y0KJEmgHTUcBaAhHQKE29JL/S6V1fZQoaAZHQG0cXt8eCCloB00WAWgIR0ChN7yTQmeEdX2UKGgGR0ATNOP/7zkIaAdL2mgIR0ChOPJfQa73dX2UKGgGR0BxR49nscABaAdNdgFoCEdAoToDR+jM3nV9lChoBkdAY8lBAv+OwWgHTegDaAhHQKE9cUahpQF1fZQoaAZHQGC8zHsC1Z1oB03oA2gIR0ChQOmSIP9UdX2UKGgGR0Bt+GvfTCtSaAdNUQFoCEdAoUHgVbiZOXV9lChoBkdAcCHENvwVkGgHTe4BaAhHQKFD1S/CZWt1fZQoaAZHQHIITGtITXdoB00AAmgIR0ChRUJp35erdX2UKGgGR0Bs5xsj3VTaaAdNKAFoCEdAoUarCSA6MnV9lChoBkdAcGnNiH6/I2gHTS4BaAhHQKFHg1qFh5R1fZQoaAZHQHBQQiFCb+doB01UAWgIR0ChSJz5O8CgdX2UKGgGR0BvnT/yXlbNaAdNXAFoCEdAoUnaKFZgX3V9lChoBkdAcjQCl7+kxmgHTVwBaAhHQKFMCBiCrcV1fZQoaAZHQG93xNh3JPtoB00yAWgIR0ChTUEiD/VBdX2UKGgGR0BNENC7btZ3aAdL52gIR0ChTetp/PPcdX2UKGgGR0BzhuIUJv5yaAdNmAFoCEdAoU+eiUPhAHV9lChoBkdAa+HaA4GUwGgHTTEBaAhHQKFQc5GSZBt1fZQoaAZHQEhpStNi6QNoB0vjaAhHQKFRF2Pkq+d1fZQoaAZHQG+XkmhM8HRoB00mAWgIR0ChUn8qWkaddX2UKGgGR0BviYcebNKRaAdNEQFoCEdAoVNTdFfAsXV9lChoBkdAbhUXMyJsPGgHTQgBaAhHQKFUFHFPznR1fZQoaAZHQGTzwAlv60poB03oA2gIR0ChV3yrgflqdX2UKGgGR0By6U9wFTvRaAdNvQFoCEdAoViuhoM8YHV9lChoBkdAcXfuPFNtZWgHTSIBaAhHQKFaEu8scyZ1fZQoaAZHQEW3rhzeXRhoB0voaAhHQKFatCJoCdV1fZQoaAZHQCJxSNwR5C5oB0v3aAhHQKFbZjmSyMV1fZQoaAZHQG7NIOhCdBloB00jAWgIR0ChXMnxSYPYdX2UKGgGR0BxvsU9IPK/aAdNMAFoCEdAoV2k83dbgXV9lChoBkdAbqBAC4jKPmgHTYIBaAhHQKFesSElE7Z1fZQoaAZHQHCxqDsdDIBoB02nAWgIR0ChYHvkili0dX2UKGgGR0AZpKaoddVvaAdL5GgIR0ChYSZs0pEydX2UKGgGR0Bw0WkgwGnoaAdNQAFoCEdAoWJLYsd1dXV9lChoBkdAS5qr92ovSWgHS/5oCEdAoWMr9wWFe3V9lChoBkdAOVrKeTV2BGgHS/JoCEdAoWTn91loUXV9lChoBkdAcb8g88s+V2gHTZABaAhHQKFmgkxh2GJ1fZQoaAZHQFOOX2M85jpoB0vmaAhHQKFnOV4X40x1fZQoaAZHQHGsVLeyiVVoB01wAWgIR0ChaNxBVuJldX2UKGgGR0Bskwl6Z6UraAdNOQFoCEdAoWm0PH1e0HV9lChoBkdAcCc4IKMNt2gHTUABaAhHQKFqlzxwyZd1fZQoaAZHQHBlvYBeXzFoB00wAWgIR0ChbAqHoHLSdX2UKGgGR0Byne4axX4kaAdNJgJoCEdAoW2NWluWKXV9lChoBkdAcBZi7kGRm2gHTS8BaAhHQKFuatvn8sN1fZQoaAZHQG1fk87p3X9oB00OAWgIR0Chb8e8oQWfdX2UKGgGR0BxLqzyBkI5aAdNJQFoCEdAoXCcN8VpK3V9lChoBkdAcO9R+BpYcWgHS/1oCEdAoXFV8qnWKHV9lChoBkdAbIYH1vl2eWgHTbEBaAhHQKFzLVn27Ft1fZQoaAZHQHIZdvKlpGpoB000AmgIR0ChdLkeyRjjdX2UKGgGR0Buyf2K2rn1aAdN6gFoCEdAoXa1N34bj3V9lChoBkdAb+af8MuvlmgHTdMBaAhHQKF4Cj6eoUB1fZQoaAZHQHEVH8GcFyJoB014AWgIR0CheRYlhPTHdX2UKGgGR0Bxa/WlMyrQaAdNTAFoCEdAoXqjG1hLG3V9lChoBkdAcHjq/M4cWGgHTZsCaAhHQKF9BJwKjSJ1fZQoaAZHQHDVe9Ba9sdoB01PAWgIR0ChfxnNX5nEdX2UKGgGR0BHZNKyv9tNaAdL6WgIR0ChgAwcPvrodX2UKGgGR0A2q863iJfqaAdL/mgIR0ChgMueBg/kdX2UKGgGR0ByDXFDOTq0aAdNdgFoCEdAoYJtjG1hLHV9lChoBkdAcgi/zreImGgHTSwBaAhHQKGDTsdkrgB1fZQoaAZHQGdtpsO5J9RoB03oA2gIR0Chhsxzq8lHdX2UKGgGR0BxZWrFOwgUaAdN3AFoCEdAoYgcWsRxtHV9lChoBkdAcB8vMKTjemgHTRUBaAhHQKGJhWSU1Q91fZQoaAZHQHE9YWgvlEJoB00bAWgIR0Chil/qX4TLdX2UKGgGR0BwJXied07saAdNIwFoCEdAoYs/bh3qzXV9lChoBkdAb0dFRYRuj2gHTSQBaAhHQKGMDyeZof11fZQoaAZHQGAPqiXY151oB03oA2gIR0Chj4SeZof0dX2UKGgGR0BuOAsd1dPdaAdNJgFoCEdAoZD+Y+jdpXV9lChoBkdAbe36FdszmGgHTZEBaAhHQKGSKoG6f8N1fZQoaAZHQG8w+qaPS2JoB00qAWgIR0ChkwUF0PpZdX2UKGgGR0BDWpL/S6UaaAdL6GgIR0ChlFwSamXPdX2UKGgGR0BKIJ+DvmYCaAdL7mgIR0ChlT9yLhrFdX2UKGgGR0BGEfJ3gUDdaAdL4GgIR0ChlgWXb/OudX2UKGgGR0Brp/bItDlYaAdNNQFoCEdAoZcjiwSrYHV9lChoBkdAcmpj6vaDf2gHTUYBaAhHQKGZUn2qT8p1fZQoaAZHQE6tgZ0jkdVoB0viaAhHQKGZ8R/3Fkx1fZQoaAZHQHJMFgYxcmloB01SAWgIR0Chmt7JwKjSdX2UKGgGR0BwNIBT4tYkaAdNQgFoCEdAoZxgqqfe13V9lChoBkdAbxqqU/wAl2gHTS0BaAhHQKGdPKDkELZ1fZQoaAZHQHGouR5kbxVoB00XAWgIR0ChngER8MNMdX2UKGgGR0A5iEC/47A+aAdL+mgIR0ChnquctoSMdX2UKGgGR0Bta+Dxsl9jaAdNSAFoCEdAoaA1Li++NHV9lChoBkdAcD3WrOqvNmgHTSIBaAhHQKGhAIP9UCJ1fZQoaAZHQGNrvhAGB4FoB03oA2gIR0ChpGs6zVtodX2UKGgGR0BvNGY4Qz1saAdNJAFoCEdAoaU5Ktga33V9lChoBkdAQc5dUsFt9GgHS9BoCEdAoaXR8lXzUnV9lChoBkdAcamNRWLgoGgHTR8BaAhHQKGnPP0I1Lt1fZQoaAZHQEtBRekYXO5oB0vXaAhHQKGn3YoRZlp1fZQoaAZHQG61uxjawlloB01dAmgIR0ChqYlXiiqRdX2UKGgGR0BxFspKBd2QaAdNQwFoCEdAoasXYg7o0XV9lChoBkdAcSz/0NBnjGgHTW8BaAhHQKGsJQ/oq1B1fZQoaAZHQHG9a/20zCVoB02HAWgIR0ChrhRXwLE2dX2UKGgGR0BvTAJokAxSaAdNZQFoCEdAoa9Of/WDpXV9lChoBkdAcBU1iONo8WgHTRwBaAhHQKGwWsFt8/l1fZQoaAZHQHGRPluFYdRoB01ZAWgIR0ChsbeRHPNWdX2UKGgGR0Bp8LUZvUBoaAdNVwFoCEdAobNv0NBnjHV9lChoBkdAQYE5IYm9hGgHS/RoCEdAobQfYL9deXV9lChoBkdANRt8Rcu8LGgHS9ZoCEdAobS0Syt3fXVlLg=="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
- "_n_updates": 4692,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
@@ -76,7 +76,7 @@
76
  "dtype": "int64",
77
  "_np_random": null
78
  },
79
- "n_envs": 1,
80
  "n_steps": 1024,
81
  "gamma": 0.999,
82
  "gae_lambda": 0.98,
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7be3094cc360>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7be3094cc400>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7be3094cc4a0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7be3094cc540>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7be3094cc5e0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7be3094cc680>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7be3094cc720>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7be3094cc7c0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7be3094cc860>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7be3094cc900>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7be3094cc9a0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7be3094cca40>",
19
  "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7be309451580>"
21
  },
22
  "verbose": 1,
23
  "policy_kwargs": {},
24
+ "num_timesteps": 1015808,
25
  "_total_timesteps": 1000000,
26
  "_num_timesteps_at_start": 0,
27
  "seed": null,
28
  "action_noise": null,
29
+ "start_time": 1738736835366582485,
30
  "learning_rate": 0.0003,
31
  "tensorboard_log": null,
32
  "_last_obs": {
33
  ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAID/G71k1rc91rYHPhmmgb4D5Cu3/nurPQAAAAAAAAAAzYESvRSytz8ev0W+rAQZvhf0kjzw2le9AAAAAAAAAADNIne8ibizPxoXib2Uqo++x3heOzrei7wAAAAAAAAAADq4qz4M6wk/JZaSvsKDcb7k3bU9Ek45vQAAAAAAAAAAzV4wPOVPsD8Erbg+x9ABvxiBB7yoQ7e8AAAAAAAAAAAacDY9B7NbP7XXuby9JrW+m2D5PINVF70AAAAAAAAAAM18ajvXYyM40/2ivQulC77GfVa90P0MPwAAgD8AAAAApsixPeEIoj/47S8/5JMPv0F2Zry+8W09AAAAAAAAAADzruM9xv++PwkhEz8SqEu91NDdvWZ/Rr0AAAAAAAAAAA2xwT3sUdq5aDNPszN7Yy65CKG7iYu2MwAAgD8AAIA/c2bNvRIEEz6AMyI9TZUxvu4C/rwo26Y7AAAAAAAAAACN+a890W4HPjxGAL6mCVm+es7DvBxTFb0AAAAAAAAAAMClgb0FiQk/xyPEPGsoqr4/Z6K9bTicPQAAAAAAAAAA2m+BPaiSl7z6HhY9sPG7PB0SCb7eZZM9AACAPwAAgD8aAgY9NywiPuhb6z2gOxy+KtCnPUXrez0AAAAAAAAAAObJGr17qpc+tq+VvXnXaL4F/229+mIuvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
  },
36
  "_last_episode_starts": {
37
  ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
  },
40
  "_last_original_obs": null,
41
  "_episode_num": 0,
42
  "use_sde": false,
43
  "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.015808000000000044,
45
  "_stats_window_size": 100,
46
  "ep_info_buffer": {
47
  ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHK2jtw71ZmMAWyUTVQBjAF0lEdAkTOR60IC2nV9lChoBkdAcPyWRigCfmgHTSABaAhHQJEzqpbUwzt1fZQoaAZHQG3GOdXko4NoB00bAWgIR0CRNNRF7UobdX2UKGgGR0BxsOnuRcNZaAdNRwFoCEdAkTTavRqoInV9lChoBkdAcLOqVhTfi2gHTXoBaAhHQJE1M34sVcl1fZQoaAZHQG7e+QEIPbxoB00eAWgIR0CRNhjeKsMidX2UKGgGR0ByfGZhKDkEaAdNJwFoCEdAkTZKmTC+DnV9lChoBkdAblufseGO/GgHTRcBaAhHQJE5UJC0F8p1fZQoaAZHQHFV/io86mxoB00xAWgIR0CROamShakidX2UKGgGR0ByEkx0uDjBaAdNHwFoCEdAkTnUiliz9nV9lChoBkdAcV2BInSfDmgHTQkBaAhHQJE6quA7Ppp1fZQoaAZHQHEb9AgPmPpoB01WAWgIR0CROxGecx0udX2UKGgGR0BtXpkqc3ERaAdNHAFoCEdAkTsxA0Kqn3V9lChoBkdAbEajeKsMiWgHTSEBaAhHQJE7ZvUBnzx1fZQoaAZHQHHUq0dBBzFoB00ZAWgIR0CRO7TzND+jdX2UKGgGR0Bw1TCUHIIXaAdNPgFoCEdAkTvEmdAgPnV9lChoBkdAQ+t0tAcDKmgHS+poCEdAkTvErK/203V9lChoBkdAcCAEfT1CgWgHTToBaAhHQJE7zUMG5c11fZQoaAZHQG3le9rXUYtoB01EAWgIR0CRPJn6VMVUdX2UKGgGR0ByIxVZLZi/aAdNAgFoCEdAkTym4uscQ3V9lChoBkdAckYosqaw2WgHTUQBaAhHQJE9uAqd6LR1fZQoaAZHQHGG9jTa0yBoB004AWgIR0CRPsEh7mdRdX2UKGgGR0Bx4tdX1anraAdNWwFoCEdAkT/zz/ZM+XV9lChoBkdAbpt4s3AEdWgHS/loCEdAkUB/fsNUfnV9lChoBkdAcOJMr3CbdGgHTR4BaAhHQJFBTLNfPX11fZQoaAZHQHFSASFoL5RoB0v3aAhHQJFBqmEXcg11fZQoaAZHQHF5IFaB7NVoB00jAWgIR0CRQqmLLpzLdX2UKGgGR0BvS9NtZV4paAdNGwFoCEdAkUK6kAPuonV9lChoBkdAcDAi0fHPvGgHTSUBaAhHQJFDohxHXmN1fZQoaAZHQGuhustCiRJoB00rAWgIR0CRQ9TVUdaMdX2UKGgGR0Br7e801qFiaAdNNQFoCEdAkUQrYbsF+3V9lChoBkdAckiKQaJhv2gHTUIBaAhHQJFEfzbvgFZ1fZQoaAZHQHJWGQ8wHqxoB00pAWgIR0CRRQm65Gz9dX2UKGgGR0BwI4Q5FPSEaAdNbQFoCEdAkUXDuSfUWnV9lChoBkdAbFaZ7XxvvWgHTRABaAhHQJFGEvHtF8Z1fZQoaAZHQHFEJVbRne1oB01GAWgIR0CRRiViF0xNdX2UKGgGR0BxRdLBbfP5aAdNvgFoCEdAkUcasU7CBXV9lChoBkdAcUFOsDGLk2gHTRoBaAhHQJFLQi3XqaB1fZQoaAZHQHGlppi7TUloB00FAWgIR0CRTHnb7CSBdX2UKGgGR0BxkLfUF0PpaAdNLQFoCEdAkUzNQbdadXV9lChoBkdAbp7sMy8BdWgHTWcBaAhHQJFM3VjI7vJ1fZQoaAZHQHAYFaW5Yo1oB02bAWgIR0CRTTwCKaXsdX2UKGgGR0BwaFCx/ustaAdNIQFoCEdAkU2hnezlcXV9lChoBkdAcqhd1uBMBmgHTWoBaAhHQJFNtzhgmZ51fZQoaAZHQHAgpbMX7+FoB00HAWgIR0CRTcuTA31jdX2UKGgGR0BvPQ0j1PFeaAdNIAFoCEdAkWDAbZOBUnV9lChoBkdAbdOsH0K7ZmgHTRQBaAhHQJFhcyrPt2N1fZQoaAZHQG+y2FnIyTJoB00XAWgIR0CRYjIFNcnmdX2UKGgGR0Bx52CvovBaaAdNUgFoCEdAkWJpU1hsqXV9lChoBkdAbc4wN9YwI2gHTSUBaAhHQJFioAJb+tN1fZQoaAZHQHMHeqBEroZoB01VAWgIR0CRYr/O+qR2dX2UKGgGR0BxMQNTcZccaAdNJgFoCEdAkWNiUC7sfXV9lChoBkdAcAHoQnQY12gHTWcBaAhHQJFj8rtmcvx1fZQoaAZHQHFsdWMju8doB00GAWgIR0CRZfVbRne0dX2UKGgGR0BxOkO/cnE3aAdNNAFoCEdAkWaVijL0SXV9lChoBkdAcjnqp97Wu2gHTQ8BaAhHQJFmtFOO8011fZQoaAZHQHIi7eANG3FoB00oAWgIR0CRZyUMoc7ydX2UKGgGR0Bx/RhNM496aAdNIAFoCEdAkWehu89Oh3V9lChoBkdAcmlqTbFju2gHTT8BaAhHQJFn4OSW7e51fZQoaAZHQG+Mwgkka/BoB00rAWgIR0CRZ+gRsdkrdX2UKGgGR0Bs2JYzSCvpaAdNCgFoCEdAkWfn7+DODHV9lChoBkdAcm6y/sVtXWgHTSgBaAhHQJFpWS2Yv391fZQoaAZHQHDIqnJkoWpoB01oAWgIR0CRaXisXBP9dX2UKGgGR0ByrUfHPu5SaAdNEgFoCEdAkWmLP6be/HV9lChoBkdAcYjOYYzi0mgHTRgBaAhHQJFqFJHy3Ct1fZQoaAZHQHIYcvh60IFoB00wAWgIR0CRanQTmGM5dX2UKGgGR0Bywjl5nlGPaAdNEQFoCEdAkWtI5HVf/nV9lChoBkdAck7FKCg9NmgHTTcBaAhHQJFrr7gsK9h1fZQoaAZHQG1pRHPNVzZoB01UAWgIR0CRa7uOCGvfdX2UKGgGR0AtUOOsDGLlaAdL9GgIR0CRbQjLjghsdX2UKGgGR0BvDW2d/axpaAdNHQFoCEdAkW2i39aUzXV9lChoBkdAcHSK77Kq42gHTQoBaAhHQJFuPAKv3al1fZQoaAZHQD8YfA9FF2FoB0v+aAhHQJFulUzbeuV1fZQoaAZHQHDHjlkpZwJoB00KAWgIR0CRbu9DQZ4wdX2UKGgGR0BxbjayrxRVaAdNNAFoCEdAkW79IClrM3V9lChoBkdAbolw84gieWgHTRoBaAhHQJFvHNB4Uvh1fZQoaAZHQHJxIXO4XoFoB00cAWgIR0CRb2BNVR1pdX2UKGgGR0Bw1yDHwPRRaAdNKQFoCEdAkXFBSYPXkHV9lChoBkdAcr8FUADJVGgHTSkBaAhHQJFxTzcynDR1fZQoaAZHQHG0nta6jFhoB00+AWgIR0CRcbrc0tROdX2UKGgGR0BsmTdpItlJaAdNBAFoCEdAkXKmp6yB1HV9lChoBkdAcfCUxmCiAWgHTQcBaAhHQJFyyH1vl2h1fZQoaAZHQHKF7O/tY0VoB01LAWgIR0CRc06q814xdX2UKGgGR0Bx96KZUkv9aAdNNwFoCEdAkXOqv3ai9XV9lChoBkdAchk4o7V8TmgHTWsBaAhHQJFzvbcoH9p1fZQoaAZHQHEegpF1B+poB00wAWgIR0CRdVEJBw+/dX2UKGgGR0Byb+3PRiPRaAdNLQFoCEdAkXXc5S3sonV9lChoBkdAcIS5gPVd5mgHTRwBaAhHQJF2Bfb9If91fZQoaAZHQHD6qXrt3OhoB00TAWgIR0CRdpFiKBNFdX2UKGgGR0BwCIwfyPMjaAdNJwFoCEdAkXa4UFjd6HV9lChoBkdAbCdXp4bCJ2gHTSMBaAhHQJF2+FGoaUB1fZQoaAZHQHJm3UDuBtloB005AWgIR0CRd8zDn/1hdX2UKGgGR0BvCCsfaHsUaAdNSAFoCEdAkXjDKLbYb3V9lChoBkdAcbMGTcIqsmgHTRABaAhHQJF5eDVYp2F1fZQoaAZHQHECTvNNahZoB00eAWgIR0CReqAWSEDhdX2UKGgGR0BswbGNrCWNaAdNMgFoCEdAkXzW+0w8GXV9lChoBkdAbIhR51Ng0GgHTS8BaAhHQJF87cGkep51fZQoaAZHQG+U93KSxJNoB01oAWgIR0CRfQNucc2jdX2UKGgGR0BvoviaRZEEaAdNIwFoCEdAkX0y925hB3V9lChoBkdAcOfHXmNipmgHTR8BaAhHQJF9hLdvbXZ1ZS4="
49
  },
50
  "ep_success_buffer": {
51
  ":type:": "<class 'collections.deque'>",
52
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
  },
54
+ "_n_updates": 248,
55
  "observation_space": {
56
  ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
  ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
 
76
  "dtype": "int64",
77
  "_np_random": null
78
  },
79
+ "n_envs": 16,
80
  "n_steps": 1024,
81
  "gamma": 0.999,
82
  "gae_lambda": 0.98,
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b6b356f214e89ecb5422a22c63571f0d79fcdaffdb1c0391718e4c9e6cdc334e
3
  size 88362
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fbff43d4513ea906d337bde3fa4d471df2764810bbf2986f1b3d721eda1a8e23
3
  size 88362
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d90e737403eb11c1c0d5773efc93fffc435bc7ca2288bd2a2855821ea922fd67
3
  size 43762
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d004a8421e342178ce1533ae54abb6d67394a34551de8974c6c545efe62af1af
3
  size 43762
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:0584ff36ac701aae13ed4ee79e584c329bc5ffa21281af1a048a1b6d5e8b0e81
3
- size 183745
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:28fbd5d64b1a6bf65b0c73b3e8365f2abb286fb902059fda8d775975ef44f9d9
3
+ size 161545
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 232.55574783251495, "std_reward": 47.38950871751467, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-02-04T16:27:01.397161"}
 
1
+ {"mean_reward": 261.4180353729201, "std_reward": 16.65766339831263, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-02-05T06:50:06.667395"}