File size: 1,917 Bytes
a541ac1
 
 
 
 
 
 
ecef8f9
a541ac1
 
 
 
 
 
ecef8f9
a541ac1
ecef8f9
a541ac1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: 10k_test3_nli_finetuned_canine_c
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# 10k_test3_nli_finetuned_canine_c

This model is a fine-tuned version of [google/canine-c](https://huggingface.co/google/canine-c) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0990
- Accuracy: 0.3247
- F1 Weighted: 0.1591
- Precision Weighted: 0.1054
- Recall Weighted: 0.3247

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Weighted | Precision Weighted | Recall Weighted |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:------------------:|:---------------:|
| 1.1017        | 1.0   | 312  | 1.1029          | 0.3247   | 0.1591      | 0.1054             | 0.3247          |
| 1.0999        | 2.0   | 625  | 1.0978          | 0.3533   | 0.1845      | 0.1248             | 0.3533          |
| 1.099         | 3.0   | 936  | 1.0990          | 0.3247   | 0.1591      | 0.1054             | 0.3247          |


### Framework versions

- Transformers 4.27.2
- Pytorch 2.0.0+cu117
- Datasets 2.10.1
- Tokenizers 0.13.2