File size: 1,261 Bytes
e7b4310
 
 
 
 
 
2677e94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7b4310
 
 
 
 
 
 
 
 
 
 
2677e94
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
---
license: apache-2.0
tags:
- mlx
base_model: GreenBitAI/DeepSeek-R1-Distill-Qwen-1.5B-layer-mix-bpw-4.0
---

# GreenBitAI/DeepSeek-R1-Distill-Qwen-1.5B-layer-mix-bpw-4.0-mlx

This quantized low-bit model [GreenBitAI/DeepSeek-R1-Distill-Qwen-1.5B-layer-mix-bpw-4.0-mlx](https://huggingface.co/GreenBitAI/DeepSeek-R1-Distill-Qwen-1.5B-layer-mix-bpw-4.0-mlx) was converted to MLX format from [`GreenBitAI/DeepSeek-R1-Distill-Qwen-1.5B-layer-mix-bpw-4.0`](https://huggingface.co/GreenBitAI/DeepSeek-R1-Distill-Qwen-1.5B-layer-mix-bpw-4.0) using gbx-lm version **0.3.5**.
Refer to the [original model card](https://huggingface.co/GreenBitAI/DeepSeek-R1-Distill-Qwen-1.5B-layer-mix-bpw-4.0) for more details on the model.

## Use with mlx

```bash
pip install gbx-lm
```

```python
from gbx_lm import load, generate

model, tokenizer = load("GreenBitAI/DeepSeek-R1-Distill-Qwen-1.5B-layer-mix-bpw-4.0-mlx")

prompt = "How can I make an apple cake"

if tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, add_generation_prompt=True
    )
    prompt = tokenizer.decode(prompt)

response = generate(model, tokenizer, prompt=prompt, verbose=True, max_tokens=4096)
```