GogetaBlueMUI commited on
Commit
0cce50e
·
verified ·
1 Parent(s): ebad12a

End of training

Browse files
Files changed (1) hide show
  1. README.md +12 -10
README.md CHANGED
@@ -3,7 +3,7 @@ library_name: transformers
3
  language:
4
  - ur
5
  license: apache-2.0
6
- base_model: GogetaBlueMUI/whisper-medium-ur-fleurs
7
  tags:
8
  - generated_from_trainer
9
  datasets:
@@ -23,7 +23,7 @@ model-index:
23
  metrics:
24
  - name: Wer
25
  type: wer
26
- value: 23.71748328784958
27
  ---
28
 
29
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -31,10 +31,10 @@ should probably proofread and complete it, then remove this comment. -->
31
 
32
  # Whisper Medium Ur - Jalandhary ASR Fine-Tuned
33
 
34
- This model is a fine-tuned version of [GogetaBlueMUI/whisper-medium-ur-fleurs](https://huggingface.co/GogetaBlueMUI/whisper-medium-ur-fleurs) on the Jalandhary ASR dataset.
35
  It achieves the following results on the evaluation set:
36
- - Loss: 0.1728
37
- - Wer: 23.7175
38
 
39
  ## Model description
40
 
@@ -53,22 +53,24 @@ More information needed
53
  ### Training hyperparameters
54
 
55
  The following hyperparameters were used during training:
56
- - learning_rate: 5e-06
57
  - train_batch_size: 8
58
  - eval_batch_size: 8
59
  - seed: 42
60
  - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
61
  - lr_scheduler_type: linear
62
- - lr_scheduler_warmup_steps: 100
63
- - training_steps: 1000
64
  - mixed_precision_training: Native AMP
65
 
66
  ### Training results
67
 
68
  | Training Loss | Epoch | Step | Validation Loss | Wer |
69
  |:-------------:|:------:|:----:|:---------------:|:-------:|
70
- | 0.207 | 0.4859 | 500 | 0.1948 | 25.6679 |
71
- | 0.1843 | 0.9718 | 1000 | 0.1728 | 23.7175 |
 
 
72
 
73
 
74
  ### Framework versions
 
3
  language:
4
  - ur
5
  license: apache-2.0
6
+ base_model: GogetaBlueMUI/whisper-medium-ur-jalandhary
7
  tags:
8
  - generated_from_trainer
9
  datasets:
 
23
  metrics:
24
  - name: Wer
25
  type: wer
26
+ value: 19.807797769827385
27
  ---
28
 
29
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
31
 
32
  # Whisper Medium Ur - Jalandhary ASR Fine-Tuned
33
 
34
+ This model is a fine-tuned version of [GogetaBlueMUI/whisper-medium-ur-jalandhary](https://huggingface.co/GogetaBlueMUI/whisper-medium-ur-jalandhary) on the Jalandhary ASR dataset.
35
  It achieves the following results on the evaluation set:
36
+ - Loss: 0.1012
37
+ - Wer: 19.8078
38
 
39
  ## Model description
40
 
 
53
  ### Training hyperparameters
54
 
55
  The following hyperparameters were used during training:
56
+ - learning_rate: 1e-06
57
  - train_batch_size: 8
58
  - eval_batch_size: 8
59
  - seed: 42
60
  - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
61
  - lr_scheduler_type: linear
62
+ - lr_scheduler_warmup_steps: 300
63
+ - training_steps: 2400
64
  - mixed_precision_training: Native AMP
65
 
66
  ### Training results
67
 
68
  | Training Loss | Epoch | Step | Validation Loss | Wer |
69
  |:-------------:|:------:|:----:|:---------------:|:-------:|
70
+ | 0.1097 | 0.5831 | 600 | 0.1066 | 18.6509 |
71
+ | 0.0664 | 1.1662 | 1200 | 0.1020 | 19.1575 |
72
+ | 0.0821 | 1.7493 | 1800 | 0.1016 | 19.2725 |
73
+ | 0.0567 | 2.3324 | 2400 | 0.1012 | 19.8078 |
74
 
75
 
76
  ### Framework versions