Go-Raw commited on
Commit
2192778
·
verified ·
1 Parent(s): 9522872

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +76 -0
README.md ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language: en
4
+ tags:
5
+ - sentiment-analysis
6
+ - roberta
7
+ - fine-tuned
8
+ datasets:
9
+ - custom
10
+ metrics:
11
+ - accuracy
12
+ - precision
13
+ - recall
14
+ - f1
15
+ base_model:
16
+ - FacebookAI/roberta-base
17
+ pipeline_tag: text-classification
18
+ ---
19
+
20
+ # Final Sentiment Model - Go-Raw
21
+
22
+ ## Model description
23
+ This is a fine-tuned `roberta-base` model for multi-class sentiment classification.
24
+ It was trained on a custom dataset of ~240k examples with 3 sentiment classes:
25
+ - 0: Negative
26
+ - 1: Positive
27
+ - 2: Neutral
28
+
29
+ The model shows significant improvement over the base model on this task.
30
+
31
+ ## Intended uses & limitations
32
+ - ✅ Suitable for English text sentiment analysis.
33
+ - 🚫 Not tested on other languages or domains beyond training data.
34
+ - 🚫 Not suitable for detecting abusive, toxic, or hate speech.
35
+
36
+ ## Training details
37
+ - Base model: `roberta-base`
38
+ - Epochs: 3
39
+ - Learning rate: 2e-5
40
+ - Batch size: 8
41
+ - Optimizer: AdamW
42
+
43
+ ## Evaluation
44
+
45
+ ### Dataset
46
+ - Train set: 1,94,038 examples
47
+ - Test set: 48,510 examples
48
+
49
+ ### Performance
50
+
51
+ | Metric | Base Model | Fine-tuned Model |
52
+ |-------|------------|-------------------|
53
+ | Accuracy | 34.1% | **88.1%** |
54
+ | Macro F1 | 24.3% | **87.5%** |
55
+ | Weighted F1 | 27.1% | **88.1%** |
56
+
57
+ ### Per-class metrics
58
+
59
+ | Class | Precision | Recall | F1-score |
60
+ |------|-----------|--------|---------|
61
+ | **0 (Negative)** | 85.3% | 83.1% | 84.2% |
62
+ | **1 (Neutral)** | 91.4% | 89.8% | 90.5% |
63
+ | **2 (Positive)** | 86.0% | 89.4% | 87.7% |
64
+
65
+ ## How to use
66
+ ```python
67
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
68
+
69
+ model = AutoModelForSequenceClassification.from_pretrained("Go-Raw/final-sentiment-model-go-raw")
70
+ tokenizer = AutoTokenizer.from_pretrained("Go-Raw/final-sentiment-model-go-raw")
71
+
72
+ text = "I absolutely love this!"
73
+ inputs = tokenizer(text, return_tensors="pt")
74
+ outputs = model(**inputs)
75
+ predicted_class = outputs.logits.argmax().item()
76
+ print(predicted_class)