File size: 4,398 Bytes
87e6c5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import itertools
import re
from typing import List, Optional, Tuple

from transformers import PreTrainedTokenizer


class DNAKmerTokenizer(PreTrainedTokenizer):
    def __init__(self, k, **kwargs):
        self.k = k
        self.special_tokens = [
            "<oov>",
            "<s>",
            "</s>",
            "<pad>",
            "<mask>",
            "<bog>",
            "<eog>",
            "<bok>",
            "<eok>",
            "<+>",
            "<->",
            "<mam>",
            "<vrt>",
            "<inv>",
            "<pln>",
            "<fng>",
            "<prt>",
            "<cds>",
            "<pseudo>",
            "<tRNA>",
            "<rRNA>",
            "<ncRNA>",
            "<misc_RNA>",
            "<sp0>",
            "<sp1>",
            "<sp2>",
            "<sp3>",
            "<sp4>",
            "<sp5>",
            "<sp6>",
            "<sp7>",
            "<sp8>",
        ]
        self.kmers = [
            "".join(kmer) for kmer in itertools.product("ATCG", repeat=self.k)
        ]
        self.vocab = {
            token: i for i, token in enumerate(self.special_tokens + self.kmers)
        }
        self.ids_to_tokens = {v: k for k, v in self.vocab.items()}
        self.special_token_pattern = re.compile(
            "|".join(re.escape(token) for token in self.special_tokens)
        )
        self.dna_pattern = re.compile(f"[A-Z]{{{self.k}}}|[A-Z]+")
        self.bos_token = "<s>"
        self.eos_token = "</s>"
        self.bos_token_id = self._convert_token_to_id(self.bos_token)
        self.eos_token_id = self._convert_token_to_id(self.eos_token)
        super().__init__(**kwargs)

    @property
    def vocab_size(self):
        return len(self.vocab)

    def get_vocab(self):
        return dict(self.vocab)

    def _tokenize(self, text, **kwargs) -> List[str]:
        tokens = []
        pos = 0
        while pos < len(text):
            special_match = self.special_token_pattern.match(text, pos)
            if special_match:
                tokens.append(special_match.group())
                pos = special_match.end()
            else:
                dna_match = self.dna_pattern.match(text, pos)
                if dna_match:
                    dna_seq = dna_match.group()
                    tokens.append(dna_seq)
                    pos = dna_match.end()
                else:
                    tokens.append(text[pos])
                    pos += 1
        return tokens

    def _convert_token_to_id(self, token: str) -> int:
        return self.vocab.get(token, self.vocab["<oov>"])

    def _convert_id_to_token(self, index: int) -> str:
        return self.ids_to_tokens.get(index, "<oov>")

    def convert_tokens_to_string(self, tokens: List[str]) -> str:
        return "".join(tokens)

    def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
        if token_ids_1 is None:
            return [self.bos_token_id] + token_ids_0 + [self.eos_token_id]
        return (
                [self.bos_token_id]
                + token_ids_0
                + [self.eos_token_id]
                + token_ids_1
                + [self.eos_token_id]
        )

    def get_special_tokens_mask(
            self, token_ids_0, token_ids_1=None, already_has_special_tokens=False
    ):
        if already_has_special_tokens:
            return super().get_special_tokens_mask(
                token_ids_0, token_ids_1, already_has_special_tokens=True
            )
        if token_ids_1 is None:
            return [1] + ([0] * len(token_ids_0)) + [1]
        return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]

    def prepare_for_model(self, *args, **kwargs):
        encoding = super().prepare_for_model(*args, **kwargs)
        if "token_type_ids" in encoding:
            del encoding["token_type_ids"]
        return encoding

    def save_vocabulary(
            self, save_directory: str, filename_prefix: Optional[str] = None
    ) -> Tuple[str]:
        import os

        vocab_file = os.path.join(
            save_directory,
            (filename_prefix + "-" if filename_prefix else "") + "vocab.txt",
        )
        with open(vocab_file, "w", encoding="utf-8") as writer:
            for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
                writer.write(token + "\n")
        return (vocab_file,)