--- license: apache-2.0 datasets: - GainEnergy/quantum-oil-gas-dataset base_model: - GainEnergy/OGAI-R1 library_name: transformers tags: - oil-gas - quantum-computing - hybrid-ai - reservoir-engineering - well-optimization - retrieval-augmented-generation - fine-tuned - quantum-llm - upstrima model-index: - name: OGAI-Quantum results: - task: type: text-generation name: Quantum AI for Oil & Gas Engineering dataset: name: GainEnergy Quantum Oil & Gas Dataset type: custom metrics: - name: Quantum Reservoir Simulation Speedup type: benchmark value: Coming Soon - name: Hybrid AI Computational Efficiency type: benchmark value: Coming Soon - name: Quantum-RAG Retrieval Score type: accuracy value: Coming Soon --- # **OGAI-Quantum: The Future of Oil & Gas AI (Coming Soon)** ![Hugging Face](https://img.shields.io/badge/HuggingFace-OGAI--Quantum-blue) [![License](https://img.shields.io/github/license/huggingface/transformers.svg)](LICENSE) 🚀 **OGAI-Quantum** is a **next-generation hybrid AI model** that fuses **quantum computing principles with classical deep learning** to deliver breakthrough performance in **reservoir modeling, drilling optimization, seismic analysis, and energy AI workflows**. 🌍 **COMING SOON**: Currently in **final development and quantum validation testing**. --- ## **🫠 Capabilities** - **⚡ Quantum-Accelerated Simulations** – Faster reservoir modeling and seismic analysis. - **🧠 Hybrid AI-Quantum Workflows** – Integrates quantum variational circuits with deep learning. - **📚 Quantum-RAG for Technical Knowledge Retrieval** – Advanced AI-driven document retrieval for energy data. ### **📌 Core Quantum Use Cases** | **Use Case** | **Quantum Advantage** | |--------------------------------|-----------------------| | **Reservoir Simulation** | Multi-state quantum superposition for faster modeling | | **Seismic Data Processing** | Quantum-based feature recognition in seismic datasets | | **Well Placement Optimization** | Quantum annealing for high-dimensional search spaces | | **Production Optimization** | Quantum variational circuits for real-time gas lift & production tuning | --- ## 🏢 **Quantum-Classical Hybrid Framework** OGAI-Quantum is powered by **Upstrima's Quantum AI Engine**, combining **quantum-enhanced decision-making** with traditional deep learning. ```yaml System Architecture: ├── Quantum Simulation Layer │ ├── Quantum Gate Operations │ ├── Qiskit & PennyLane Integration │ ├── Variational Quantum Circuits (VQC) │ ├── Quantum Annealing for Optimization │ ├── Quantum Reservoir Simulation Models │ ├── Seismic Data Quantum Processing ├── Classical AI Model │ ├── Fine-Tuned TinyR1-32B Model │ ├── Hybrid Engineering Knowledge Base │ ├── Neural Retrieval-Augmented Generation (RAG) │ ├── Classical Physics-Based Simulations │ ├── AI-Powered Technical Document Understanding │ ├── Adaptive Learning & Model Refinement └── Hybrid Orchestration Layer ├── Quantum-Classical Task Partitioning ├── Quantum State Virtualization Engine ├── Quantum Pipeline API for High-Performance Computing ├── Real-Time Quantum State Synchronization ├── Cloud & Edge Deployment Support ├── API Integration with Upstrima AI Suite ``` --- ## 📦 **Model Variants** | **Model Name** | **Base Model** | **Quantum Features** | **Context Window** | **Use Case** | |-------------------|----------------|----------------|----------------|-------------| | **OGAI-Quantum** | OGAI-R1 + Quantum | Yes | TDB tokens | **Hybrid AI for Energy & Engineering** | | **OGAI-R1** | TinyR1-32B | No | 128k tokens | **Reservoir AI & RAG** | | **OGMOE** | Mixtral-8x7B + MoE | No | 32K tokens | **Drilling Optimization & Decision Support** | --- ## 🚀 **Deployment & Integration** OGAI-Quantum will be available on: - **Hugging Face Inference API** - **AWS Braket for Hybrid Quantum-Classical Workflows** - **On-Premise Quantum-Classical HPC Deployment** ### **🔧 Technical Stack** - **Quantum Libraries:** `Qiskit`, `PennyLane`, `Cirq` - **AI Frameworks:** `Transformers`, `AutoGPTQ`, `PEFT` - **Data Pipelines:** `FAISS`, `Pinecone`, `LangChain` --- ## ⚠️ **Limitations** 🚧 **Quantum Hardware Dependency** – While designed for hybrid execution, full quantum acceleration requires cloud-based quantum backends. 🚧 **Experimental Hybrid AI** – Model performance is still undergoing validation for real-world **engineering applications**. 🚧 **Not General-Purpose** – Optimized specifically for **oil & gas industry workflows**. --- ## 🔗 **Resources** - **[Quantum Applications in Oil & Gas](https://huggingface.co/docs/quantum-oil-gas-applications)** – Technical whitepaper on **hybrid AI for energy**. - **[GainEnergy AI Platform](https://gain.energy)** – Explore AI-powered **quantum-enhanced energy solutions**. - **[Upstrima Quantum Computing Extension](https://huggingface.co/docs/upstrima-quantum-extension)** – WebAssembly-powered quantum simulation. --- ## 📚 **Citing OGAI-Quantum** ```bibtex @article{ogai-quantum-2025, title={OGAI-Quantum: Hybrid Quantum-Classical AI for Oil & Gas Engineering}, author={GainEnergy AI Team}, year={2025}, publisher={Hugging Face Models} } ```