softwareweaver commited on
Commit
a5dce77
·
verified ·
1 Parent(s): 200a6dd

Upload 28 files

Browse files
Files changed (29) hide show
  1. .gitattributes +6 -0
  2. LICENSE +22 -0
  3. README.md +73 -0
  4. config.json +151 -0
  5. cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/genai_config.json +69 -0
  6. cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/phi-3.5-v-instruct-embedding.onnx +3 -0
  7. cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/phi-3.5-v-instruct-embedding.onnx.data +3 -0
  8. cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/phi-3.5-v-instruct-text.onnx +3 -0
  9. cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/phi-3.5-v-instruct-text.onnx.data +3 -0
  10. cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/phi-3.5-v-instruct-vision.onnx +3 -0
  11. cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/phi-3.5-v-instruct-vision.onnx.data +3 -0
  12. cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/processor_config.json +35 -0
  13. cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/special_tokens_map.json +36 -0
  14. cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/tokenizer.json +0 -0
  15. cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/tokenizer_config.json +413 -0
  16. gpu/gpu-int4-rtn-block-32/genai_config.json +69 -0
  17. gpu/gpu-int4-rtn-block-32/phi-3.5-v-instruct-embedding.onnx +3 -0
  18. gpu/gpu-int4-rtn-block-32/phi-3.5-v-instruct-embedding.onnx.data +3 -0
  19. gpu/gpu-int4-rtn-block-32/phi-3.5-v-instruct-text.onnx +3 -0
  20. gpu/gpu-int4-rtn-block-32/phi-3.5-v-instruct-text.onnx.data +3 -0
  21. gpu/gpu-int4-rtn-block-32/phi-3.5-v-instruct-vision.onnx +3 -0
  22. gpu/gpu-int4-rtn-block-32/phi-3.5-v-instruct-vision.onnx.data +3 -0
  23. gpu/gpu-int4-rtn-block-32/processor_config.json +35 -0
  24. gpu/gpu-int4-rtn-block-32/special_tokens_map.json +36 -0
  25. gpu/gpu-int4-rtn-block-32/tokenizer.json +0 -0
  26. gpu/gpu-int4-rtn-block-32/tokenizer_config.json +413 -0
  27. onnx/builder.py +232 -0
  28. onnx/config.json +151 -0
  29. onnx/modeling_phi3_v.py +2085 -0
.gitattributes CHANGED
@@ -33,3 +33,9 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/phi-3.5-v-instruct-embedding.onnx.data filter=lfs diff=lfs merge=lfs -text
37
+ cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/phi-3.5-v-instruct-text.onnx.data filter=lfs diff=lfs merge=lfs -text
38
+ cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/phi-3.5-v-instruct-vision.onnx.data filter=lfs diff=lfs merge=lfs -text
39
+ gpu/gpu-int4-rtn-block-32/phi-3.5-v-instruct-embedding.onnx.data filter=lfs diff=lfs merge=lfs -text
40
+ gpu/gpu-int4-rtn-block-32/phi-3.5-v-instruct-text.onnx.data filter=lfs diff=lfs merge=lfs -text
41
+ gpu/gpu-int4-rtn-block-32/phi-3.5-v-instruct-vision.onnx.data filter=lfs diff=lfs merge=lfs -text
LICENSE ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Microsoft.
2
+ Copyright (c) Microsoft Corporation.
3
+
4
+ MIT License
5
+
6
+ Permission is hereby granted, free of charge, to any person obtaining a copy
7
+ of this software and associated documentation files (the "Software"), to deal
8
+ in the Software without restriction, including without limitation the rights
9
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
+ copies of the Software, and to permit persons to whom the Software is
11
+ furnished to do so, subject to the following conditions:
12
+
13
+ The above copyright notice and this permission notice shall be included in all
14
+ copies or substantial portions of the Software.
15
+
16
+ THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22
+ SOFTWARE.
README.md CHANGED
@@ -1,3 +1,76 @@
1
  ---
2
  license: mit
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
+ tags:
4
+ - ONNX
5
+ - DML
6
+ - ONNXRuntime
7
+ - phi3
8
+ - custom_code
9
  ---
10
+
11
+ # Phi-3.5 Vision Instruct ONNX models
12
+
13
+ <!-- Provide a quick summary of what the model is/does. -->
14
+ This repository hosts the optimized versions of [Phi-3.5-vision-instruct](https://huggingface.co/microsoft/Phi-3.5-vision-instruct) to accelerate inference with ONNX Runtime for your CPU and GPU.
15
+
16
+ Phi-3.5 Vision is a lightweight, state-of-the-art open multimodal model built upon datasets that include synthetic data and filtered publicly available web data with a focus on very high-quality, reasoning dense data both on text and vision. The model belongs to the Phi-3.5 model family, and the multimodal version supports up to 128K context length (in tokens). The base model has undergone a rigorous enhancement process, incorporating both supervised fine-tuning and direct preference optimization, to ensure precise instruction adherence and robust safety measures.
17
+
18
+ Optimized variants of the Phi-3.5 Vision models are published here in [ONNX](https://onnx.ai) format to run with [ONNX Runtime](https://onnxruntime.ai/) on CPU and GPU across devices, including server platforms, Windows, Linux and Mac desktops, and mobile CPUs, with the precision best suited to each of these targets.
19
+
20
+ ## ONNX Models
21
+
22
+ Here are some of the optimized configurations we have added:
23
+
24
+ 1. ONNX model for INT4 CPU: ONNX model for CPUs using int4 quantization via RTN.
25
+ 2. ONNX model for INT4 GPU: ONNX model for GPUs using int4 quantization via RTN.
26
+
27
+ ## How to Get Started with the Model
28
+ To support the Phi-3.5 models across a range of devices, platforms, and EP backends, we introduce a new API to wrap several aspects of generative AI inferencing. This API makes it easy to drag and drop LLMs straight into your app. To run the early version of these models with ONNX, follow the steps [here](https://aka.ms/run-phi3-v-onnx).
29
+
30
+ ## Hardware Supported
31
+
32
+ The models are tested on:
33
+ - Intel(R) Core(TM) i9-10920X CPU @ 3.50GHz
34
+ - 1 A100 GPU, SKU: Standard_ND96amsr_A100_v4 (CUDA)
35
+ - GPU SKU: RTX 4080 (DirectML)
36
+
37
+ Minimum Configuration Required:
38
+ - CPU machine with 16GB RAM
39
+ - CUDA: NVIDIA GPU with [Compute Capability](https://developer.nvidia.com/cuda-gpus) >= 7.0
40
+ - Windows: DirectX 12-capable GPU and a minimum of 10GB of combined RAM
41
+
42
+ ### Model Description
43
+
44
+ - **Developed by:** Microsoft
45
+ - **Model type:** ONNX
46
+ - **Language(s) (NLP):** Python, C, C++
47
+ - **License:** MIT
48
+ - **Model Description:** This is a conversion of the Phi-3.5 Vision Instruct model for ONNX Runtime inference.
49
+ - **Disclaimer:** This model is only an optimization of the base model. Any risk associated with the model is the responsibility of the user of the model. Please verify and test for your scenarios. There may be a slight difference in output from the base model with the optimizations applied. We have conducted responsible AI evaluations and did not observe significant regressions compared to the base model.
50
+
51
+ ## Additional Details
52
+ - [**Phi-3.5 Blog**](https://aka.ms/phi3_ONNXBuild24)
53
+ - [**Phi-3.5 Model Blog Link**](https://aka.ms/phi3.5-techblog)
54
+ - [**Phi-3.5 Model Card**](https://huggingface.co/microsoft/Phi-3.5-vision-instruct)
55
+ - [**Phi-3.5 Technical Report**](https://aka.ms/phi3-tech-report)
56
+ - [**Phi-3.5 on Azure AI Studio**](https://aka.ms/try-phi3.5vision)
57
+
58
+ ## Performance Metrics
59
+ The performance of the ONNX vision model is similar to [Phi-3.5-mini-instruct-onnx](https://huggingface.co/microsoft/Phi-3.5-mini-instruct-onnx) during token generation.
60
+
61
+ ## Base Model Usage and Considerations
62
+ For details and RAI considerations of the base model, please refer to [here](https://huggingface.co/microsoft/Phi-3.5-vision-instruct).
63
+
64
+ Please note that ONNX model output may vary slightly from the base model. The users are responsible for verifying the output for their scenarios and own responsibility of the usage.
65
+
66
+ ## Appendix
67
+
68
+ ## Model Card Contact
69
+ parinitarahi, kvaishnavi, natke, yunl, sunghcho
70
+
71
+ ## Contributors
72
+ Kunal Vaishnavi, Sunghoon Choi, Yufeng Li, Baiju Meswani, Sheetal Arun Kadam, Rui Ren, Natalie Kershaw, Parinita Rahi, Patrice Vignola, Xiang Zhang, Chai Chaoweeraprasit, Logan Iyer, Vicente Rivera, Jacques Van Rhyn, Yun Liu
73
+
74
+ ## Trademarks
75
+
76
+ This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow [Microsoft’s Trademark & Brand Guidelines](https://www.microsoft.com/en-us/legal/intellectualproperty/trademarks). Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party’s policies.
config.json ADDED
@@ -0,0 +1,151 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Phi-3.5-vision-instruct",
3
+ "architectures": [
4
+ "Phi3VForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_phi3_v.Phi3VConfig",
9
+ "AutoModelForCausalLM": "modeling_phi3_v.Phi3VForCausalLM"
10
+ },
11
+ "bos_token_id": 1,
12
+ "embd_layer": {
13
+ "embedding_cls": "image",
14
+ "hd_transform_order": "sub_glb",
15
+ "projection_cls": "mlp",
16
+ "use_hd_transform": true,
17
+ "with_learnable_separator": true
18
+ },
19
+ "embd_pdrop": 0.0,
20
+ "eos_token_id": 2,
21
+ "hidden_act": "silu",
22
+ "hidden_size": 3072,
23
+ "img_processor": {
24
+ "image_dim_out": 1024,
25
+ "model_name": "openai/clip-vit-large-patch14-336",
26
+ "name": "clip_vision_model",
27
+ "num_img_tokens": 144
28
+ },
29
+ "initializer_range": 0.02,
30
+ "intermediate_size": 8192,
31
+ "max_position_embeddings": 131072,
32
+ "model_type": "phi3_v",
33
+ "num_attention_heads": 32,
34
+ "num_hidden_layers": 32,
35
+ "num_key_value_heads": 32,
36
+ "original_max_position_embeddings": 4096,
37
+ "pad_token_id": 32000,
38
+ "resid_pdrop": 0.0,
39
+ "rms_norm_eps": 1e-05,
40
+ "rope_scaling": {
41
+ "long_factor": [
42
+ 1.0800000429153442,
43
+ 1.1100000143051147,
44
+ 1.1399999856948853,
45
+ 1.340000033378601,
46
+ 1.5899999141693115,
47
+ 1.600000023841858,
48
+ 1.6200000047683716,
49
+ 2.620000123977661,
50
+ 3.2300000190734863,
51
+ 3.2300000190734863,
52
+ 4.789999961853027,
53
+ 7.400000095367432,
54
+ 7.700000286102295,
55
+ 9.09000015258789,
56
+ 12.199999809265137,
57
+ 17.670000076293945,
58
+ 24.46000099182129,
59
+ 28.57000160217285,
60
+ 30.420001983642578,
61
+ 30.840002059936523,
62
+ 32.590003967285156,
63
+ 32.93000411987305,
64
+ 42.320003509521484,
65
+ 44.96000289916992,
66
+ 50.340003967285156,
67
+ 50.45000457763672,
68
+ 57.55000305175781,
69
+ 57.93000411987305,
70
+ 58.21000289916992,
71
+ 60.1400032043457,
72
+ 62.61000442504883,
73
+ 62.62000274658203,
74
+ 62.71000289916992,
75
+ 63.1400032043457,
76
+ 63.1400032043457,
77
+ 63.77000427246094,
78
+ 63.93000411987305,
79
+ 63.96000289916992,
80
+ 63.970001220703125,
81
+ 64.02999877929688,
82
+ 64.06999969482422,
83
+ 64.08000183105469,
84
+ 64.12000274658203,
85
+ 64.41000366210938,
86
+ 64.4800033569336,
87
+ 64.51000213623047,
88
+ 64.52999877929688,
89
+ 64.83999633789062
90
+ ],
91
+ "short_factor": [
92
+ 1.08,
93
+ 1.1,
94
+ 1.1300000000000001,
95
+ 1.2800000000000002,
96
+ 1.3100000000000003,
97
+ 1.4500000000000004,
98
+ 1.4500000000000004,
99
+ 1.9500000000000008,
100
+ 2.030000000000001,
101
+ 2.4299999999999926,
102
+ 2.5699999999999896,
103
+ 2.9499999999999815,
104
+ 3.729999999999965,
105
+ 3.869999999999962,
106
+ 4.189999999999955,
107
+ 4.43999999999995,
108
+ 4.6399999999999455,
109
+ 4.979999999999938,
110
+ 5.159999999999934,
111
+ 5.279999999999932,
112
+ 5.759999999999922,
113
+ 5.889999999999919,
114
+ 5.889999999999919,
115
+ 5.969999999999917,
116
+ 6.089999999999915,
117
+ 6.2799999999999105,
118
+ 6.7699999999999,
119
+ 6.8899999999998975,
120
+ 7.109999999999893,
121
+ 7.129999999999892,
122
+ 7.179999999999891,
123
+ 7.289999999999889,
124
+ 7.339999999999888,
125
+ 7.559999999999883,
126
+ 7.619999999999882,
127
+ 7.69999999999988,
128
+ 7.879999999999876,
129
+ 7.879999999999876,
130
+ 7.879999999999876,
131
+ 7.939999999999875,
132
+ 7.949999999999875,
133
+ 7.979999999999874,
134
+ 8.19999999999987,
135
+ 8.439999999999864,
136
+ 8.469999999999864,
137
+ 8.589999999999861,
138
+ 8.809999999999857,
139
+ 8.999999999999853
140
+ ],
141
+ "type": "su"
142
+ },
143
+ "rope_theta": 10000.0,
144
+ "sliding_window": 262144,
145
+ "tie_word_embeddings": false,
146
+ "torch_dtype": "bfloat16",
147
+ "transformers_version": "4.38.1",
148
+ "use_cache": true,
149
+ "vocab_size": 32064,
150
+ "_attn_implementation": "flash_attention_2"
151
+ }
cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/genai_config.json ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model": {
3
+ "bos_token_id": 1,
4
+ "context_length": 131072,
5
+ "decoder": {
6
+ "session_options": {
7
+ "log_id": "onnxruntime-genai",
8
+ "provider_options": []
9
+ },
10
+ "filename": "phi-3.5-v-instruct-text.onnx",
11
+ "head_size": 96,
12
+ "hidden_size": 3072,
13
+ "inputs": {
14
+ "inputs_embeds": "inputs_embeds",
15
+ "attention_mask": "attention_mask",
16
+ "past_key_names": "past_key_values.%d.key",
17
+ "past_value_names": "past_key_values.%d.value"
18
+ },
19
+ "outputs": {
20
+ "logits": "logits",
21
+ "present_key_names": "present.%d.key",
22
+ "present_value_names": "present.%d.value"
23
+ },
24
+ "num_attention_heads": 32,
25
+ "num_hidden_layers": 32,
26
+ "num_key_value_heads": 32
27
+ },
28
+ "embedding": {
29
+ "filename": "phi-3.5-v-instruct-embedding.onnx",
30
+ "inputs": {
31
+ "input_ids": "input_ids",
32
+ "image_features": "image_features"
33
+ },
34
+ "outputs": {
35
+ "inputs_embeds": "inputs_embeds"
36
+ }
37
+ },
38
+ "vision": {
39
+ "filename": "phi-3.5-v-instruct-vision.onnx",
40
+ "inputs": {
41
+ "pixel_values": "pixel_values",
42
+ "image_sizes": "image_sizes"
43
+ },
44
+ "outputs": {
45
+ "image_features": "image_features"
46
+ }
47
+ },
48
+ "eos_token_id": 32007,
49
+ "pad_token_id": 32000,
50
+ "type": "phi3v",
51
+ "vocab_size": 32064
52
+ },
53
+ "search": {
54
+ "diversity_penalty": 0.0,
55
+ "do_sample": false,
56
+ "early_stopping": true,
57
+ "length_penalty": 1.0,
58
+ "max_length": 131072,
59
+ "min_length": 0,
60
+ "no_repeat_ngram_size": 0,
61
+ "num_beams": 1,
62
+ "num_return_sequences": 1,
63
+ "past_present_share_buffer": true,
64
+ "repetition_penalty": 1.0,
65
+ "temperature": 1.0,
66
+ "top_k": 1,
67
+ "top_p": 1.0
68
+ }
69
+ }
cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/phi-3.5-v-instruct-embedding.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:83bb330b0a319812eccdf6b6bc5ce17eb6a120bcf76120f6af27c19c3d396ea1
3
+ size 6091
cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/phi-3.5-v-instruct-embedding.onnx.data ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2dcbf0fcb14433ac8fa82b35c39675c01fb552512b4c0e5d54e8f247046ef393
3
+ size 394002432
cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/phi-3.5-v-instruct-text.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f7580bd589693e87e3825ffe8eda3f5fda4158d2d82d27803c263aa0e7454a81
3
+ size 52123846
cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/phi-3.5-v-instruct-text.onnx.data ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:214fd2e8a09b8c7b141f9095171aed6f994768a36803b7eeb9ea3be16da99dd6
3
+ size 2327285760
cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/phi-3.5-v-instruct-vision.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e06ccb2d2c35c2565f0abe507241f33cae9d7f63a1d79f6170b317d12f35c3bf
3
+ size 414021
cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/phi-3.5-v-instruct-vision.onnx.data ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:45af0e626ba0eff702d9c1873c84f9e60f1f17bb2036bf1abc045968b5e645df
3
+ size 444916232
cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/processor_config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "processor": {
3
+ "name": "image_processing",
4
+ "transforms": [
5
+ {
6
+ "operation": {
7
+ "name": "decode_image",
8
+ "domain": "com.microsoft.extensions",
9
+ "type": "DecodeImage",
10
+ "attrs": {
11
+ "color_space": "BGR"
12
+ }
13
+ }
14
+ },
15
+ {
16
+ "operation": {
17
+ "name": "convert_to_rgb",
18
+ "domain": "com.microsoft.extensions",
19
+ "type": "ConvertRGB"
20
+ }
21
+ },
22
+ {
23
+ "operation": {
24
+ "name": "phi3_image_transform",
25
+ "domain": "com.microsoft.extensions",
26
+ "type": "Phi3ImageTransform",
27
+ "attrs": {
28
+ "num_crops": 4,
29
+ "num_img_tokens": 144
30
+ }
31
+ }
32
+ }
33
+ ]
34
+ }
35
+ }
cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/special_tokens_map.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|system|>",
4
+ "<|end|>",
5
+ "<|user|>",
6
+ "<|end|>"
7
+ ],
8
+ "bos_token": {
9
+ "content": "<s>",
10
+ "lstrip": false,
11
+ "normalized": false,
12
+ "rstrip": false,
13
+ "single_word": false
14
+ },
15
+ "eos_token": {
16
+ "content": "<|endoftext|>",
17
+ "lstrip": false,
18
+ "normalized": false,
19
+ "rstrip": false,
20
+ "single_word": false
21
+ },
22
+ "pad_token": {
23
+ "content": "<|endoftext|>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false
28
+ },
29
+ "unk_token": {
30
+ "content": "<unk>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false
35
+ }
36
+ }
cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
cpu_and_mobile/cpu-int4-rtn-block-32-acc-level-4/tokenizer_config.json ADDED
@@ -0,0 +1,413 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": true,
27
+ "single_word": false,
28
+ "special": false
29
+ },
30
+ "32000": {
31
+ "content": "<|endoftext|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "32001": {
39
+ "content": "<|assistant|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": true,
43
+ "single_word": false,
44
+ "special": true
45
+ },
46
+ "32002": {
47
+ "content": "<|placeholder1|>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": true,
51
+ "single_word": false,
52
+ "special": true
53
+ },
54
+ "32003": {
55
+ "content": "<|placeholder2|>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": true,
59
+ "single_word": false,
60
+ "special": true
61
+ },
62
+ "32004": {
63
+ "content": "<|placeholder3|>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": true,
67
+ "single_word": false,
68
+ "special": true
69
+ },
70
+ "32005": {
71
+ "content": "<|placeholder4|>",
72
+ "lstrip": false,
73
+ "normalized": false,
74
+ "rstrip": true,
75
+ "single_word": false,
76
+ "special": true
77
+ },
78
+ "32006": {
79
+ "content": "<|system|>",
80
+ "lstrip": false,
81
+ "normalized": false,
82
+ "rstrip": false,
83
+ "single_word": false,
84
+ "special": true
85
+ },
86
+ "32007": {
87
+ "content": "<|end|>",
88
+ "lstrip": false,
89
+ "normalized": false,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": true
93
+ },
94
+ "32008": {
95
+ "content": "<|placeholder5|>",
96
+ "lstrip": false,
97
+ "normalized": false,
98
+ "rstrip": true,
99
+ "single_word": false,
100
+ "special": true
101
+ },
102
+ "32009": {
103
+ "content": "<|placeholder6|>",
104
+ "lstrip": false,
105
+ "normalized": false,
106
+ "rstrip": true,
107
+ "single_word": false,
108
+ "special": true
109
+ },
110
+ "32010": {
111
+ "content": "<|user|>",
112
+ "lstrip": false,
113
+ "normalized": false,
114
+ "rstrip": false,
115
+ "single_word": false,
116
+ "special": true
117
+ },
118
+ "32011": {
119
+ "content": "<|placeholder7|>",
120
+ "lstrip": false,
121
+ "normalized": false,
122
+ "rstrip": true,
123
+ "single_word": false,
124
+ "special": true
125
+ },
126
+ "32012": {
127
+ "content": "<|placeholder8|>",
128
+ "lstrip": false,
129
+ "normalized": false,
130
+ "rstrip": true,
131
+ "single_word": false,
132
+ "special": true
133
+ },
134
+ "32013": {
135
+ "content": "<|placeholder9|>",
136
+ "lstrip": false,
137
+ "normalized": false,
138
+ "rstrip": true,
139
+ "single_word": false,
140
+ "special": true
141
+ },
142
+ "32014": {
143
+ "content": "<|placeholder10|>",
144
+ "lstrip": false,
145
+ "normalized": false,
146
+ "rstrip": true,
147
+ "single_word": false,
148
+ "special": true
149
+ },
150
+ "32015": {
151
+ "content": "<|placeholder11|>",
152
+ "lstrip": false,
153
+ "normalized": false,
154
+ "rstrip": true,
155
+ "single_word": false,
156
+ "special": true
157
+ },
158
+ "32016": {
159
+ "content": "<|placeholder12|>",
160
+ "lstrip": false,
161
+ "normalized": false,
162
+ "rstrip": true,
163
+ "single_word": false,
164
+ "special": true
165
+ },
166
+ "32017": {
167
+ "content": "<|placeholder13|>",
168
+ "lstrip": false,
169
+ "normalized": false,
170
+ "rstrip": true,
171
+ "single_word": false,
172
+ "special": true
173
+ },
174
+ "32018": {
175
+ "content": "<|placeholder14|>",
176
+ "lstrip": false,
177
+ "normalized": false,
178
+ "rstrip": true,
179
+ "single_word": false,
180
+ "special": true
181
+ },
182
+ "32019": {
183
+ "content": "<|placeholder15|>",
184
+ "lstrip": false,
185
+ "normalized": false,
186
+ "rstrip": true,
187
+ "single_word": false,
188
+ "special": true
189
+ },
190
+ "32020": {
191
+ "content": "<|placeholder16|>",
192
+ "lstrip": false,
193
+ "normalized": false,
194
+ "rstrip": true,
195
+ "single_word": false,
196
+ "special": true
197
+ },
198
+ "32021": {
199
+ "content": "<|placeholder17|>",
200
+ "lstrip": false,
201
+ "normalized": false,
202
+ "rstrip": true,
203
+ "single_word": false,
204
+ "special": true
205
+ },
206
+ "32022": {
207
+ "content": "<|placeholder18|>",
208
+ "lstrip": false,
209
+ "normalized": false,
210
+ "rstrip": true,
211
+ "single_word": false,
212
+ "special": true
213
+ },
214
+ "32023": {
215
+ "content": "<|placeholder19|>",
216
+ "lstrip": false,
217
+ "normalized": false,
218
+ "rstrip": true,
219
+ "single_word": false,
220
+ "special": true
221
+ },
222
+ "32024": {
223
+ "content": "<|placeholder20|>",
224
+ "lstrip": false,
225
+ "normalized": false,
226
+ "rstrip": true,
227
+ "single_word": false,
228
+ "special": true
229
+ },
230
+ "32025": {
231
+ "content": "<|placeholder21|>",
232
+ "lstrip": false,
233
+ "normalized": false,
234
+ "rstrip": true,
235
+ "single_word": false,
236
+ "special": true
237
+ },
238
+ "32026": {
239
+ "content": "<|placeholder22|>",
240
+ "lstrip": false,
241
+ "normalized": false,
242
+ "rstrip": true,
243
+ "single_word": false,
244
+ "special": true
245
+ },
246
+ "32027": {
247
+ "content": "<|placeholder23|>",
248
+ "lstrip": false,
249
+ "normalized": false,
250
+ "rstrip": true,
251
+ "single_word": false,
252
+ "special": true
253
+ },
254
+ "32028": {
255
+ "content": "<|placeholder24|>",
256
+ "lstrip": false,
257
+ "normalized": false,
258
+ "rstrip": true,
259
+ "single_word": false,
260
+ "special": true
261
+ },
262
+ "32029": {
263
+ "content": "<|placeholder25|>",
264
+ "lstrip": false,
265
+ "normalized": false,
266
+ "rstrip": true,
267
+ "single_word": false,
268
+ "special": true
269
+ },
270
+ "32030": {
271
+ "content": "<|placeholder26|>",
272
+ "lstrip": false,
273
+ "normalized": false,
274
+ "rstrip": true,
275
+ "single_word": false,
276
+ "special": true
277
+ },
278
+ "32031": {
279
+ "content": "<|placeholder27|>",
280
+ "lstrip": false,
281
+ "normalized": false,
282
+ "rstrip": true,
283
+ "single_word": false,
284
+ "special": true
285
+ },
286
+ "32032": {
287
+ "content": "<|placeholder28|>",
288
+ "lstrip": false,
289
+ "normalized": false,
290
+ "rstrip": true,
291
+ "single_word": false,
292
+ "special": true
293
+ },
294
+ "32033": {
295
+ "content": "<|placeholder29|>",
296
+ "lstrip": false,
297
+ "normalized": false,
298
+ "rstrip": true,
299
+ "single_word": false,
300
+ "special": true
301
+ },
302
+ "32034": {
303
+ "content": "<|placeholder30|>",
304
+ "lstrip": false,
305
+ "normalized": false,
306
+ "rstrip": true,
307
+ "single_word": false,
308
+ "special": true
309
+ },
310
+ "32035": {
311
+ "content": "<|placeholder31|>",
312
+ "lstrip": false,
313
+ "normalized": false,
314
+ "rstrip": true,
315
+ "single_word": false,
316
+ "special": true
317
+ },
318
+ "32036": {
319
+ "content": "<|placeholder32|>",
320
+ "lstrip": false,
321
+ "normalized": false,
322
+ "rstrip": true,
323
+ "single_word": false,
324
+ "special": true
325
+ },
326
+ "32037": {
327
+ "content": "<|placeholder33|>",
328
+ "lstrip": false,
329
+ "normalized": false,
330
+ "rstrip": true,
331
+ "single_word": false,
332
+ "special": true
333
+ },
334
+ "32038": {
335
+ "content": "<|placeholder34|>",
336
+ "lstrip": false,
337
+ "normalized": false,
338
+ "rstrip": true,
339
+ "single_word": false,
340
+ "special": true
341
+ },
342
+ "32039": {
343
+ "content": "<|placeholder35|>",
344
+ "lstrip": false,
345
+ "normalized": false,
346
+ "rstrip": true,
347
+ "single_word": false,
348
+ "special": true
349
+ },
350
+ "32040": {
351
+ "content": "<|placeholder36|>",
352
+ "lstrip": false,
353
+ "normalized": false,
354
+ "rstrip": true,
355
+ "single_word": false,
356
+ "special": true
357
+ },
358
+ "32041": {
359
+ "content": "<|placeholder37|>",
360
+ "lstrip": false,
361
+ "normalized": false,
362
+ "rstrip": true,
363
+ "single_word": false,
364
+ "special": true
365
+ },
366
+ "32042": {
367
+ "content": "<|placeholder38|>",
368
+ "lstrip": false,
369
+ "normalized": false,
370
+ "rstrip": true,
371
+ "single_word": false,
372
+ "special": true
373
+ },
374
+ "32043": {
375
+ "content": "<|placeholder39|>",
376
+ "lstrip": false,
377
+ "normalized": false,
378
+ "rstrip": true,
379
+ "single_word": false,
380
+ "special": true
381
+ },
382
+ "32044": {
383
+ "content": "<|image|>",
384
+ "lstrip": false,
385
+ "normalized": false,
386
+ "rstrip": true,
387
+ "single_word": false,
388
+ "special": true
389
+ }
390
+ },
391
+ "additional_special_tokens": [
392
+ "<|system|>",
393
+ "<|end|>",
394
+ "<|user|>",
395
+ "<|end|>"
396
+ ],
397
+ "auto_map": {
398
+ "AutoProcessor": "processing_phi3_v.Phi3VProcessor"
399
+ },
400
+ "bos_token": "<s>",
401
+ "chat_template": "{% for message in messages %}{{'<|' + message['role'] + '|>' + '\n' + message['content'] + '<|end|>\n' }}{% endfor %}{% if add_generation_prompt and messages[-1]['role'] != 'assistant' %}{{- '<|assistant|>\n' -}}{% endif %}",
402
+ "clean_up_tokenization_spaces": false,
403
+ "eos_token": "<|endoftext|>",
404
+ "legacy": false,
405
+ "model_max_length": 131072,
406
+ "pad_token": "<|endoftext|>",
407
+ "padding_side": "right",
408
+ "processor_class": "Phi3VProcessor",
409
+ "sp_model_kwargs": {},
410
+ "tokenizer_class": "LlamaTokenizer",
411
+ "unk_token": "<unk>",
412
+ "use_default_system_prompt": false
413
+ }
gpu/gpu-int4-rtn-block-32/genai_config.json ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model": {
3
+ "bos_token_id": 1,
4
+ "context_length": 131072,
5
+ "decoder": {
6
+ "session_options": {
7
+ "log_id": "onnxruntime-genai",
8
+ "provider_options": []
9
+ },
10
+ "filename": "phi-3.5-v-instruct-text.onnx",
11
+ "head_size": 96,
12
+ "hidden_size": 3072,
13
+ "inputs": {
14
+ "inputs_embeds": "inputs_embeds",
15
+ "attention_mask": "attention_mask",
16
+ "past_key_names": "past_key_values.%d.key",
17
+ "past_value_names": "past_key_values.%d.value"
18
+ },
19
+ "outputs": {
20
+ "logits": "logits",
21
+ "present_key_names": "present.%d.key",
22
+ "present_value_names": "present.%d.value"
23
+ },
24
+ "num_attention_heads": 32,
25
+ "num_hidden_layers": 32,
26
+ "num_key_value_heads": 32
27
+ },
28
+ "embedding": {
29
+ "filename": "phi-3.5-v-instruct-embedding.onnx",
30
+ "inputs": {
31
+ "input_ids": "input_ids",
32
+ "image_features": "image_features"
33
+ },
34
+ "outputs": {
35
+ "inputs_embeds": "inputs_embeds"
36
+ }
37
+ },
38
+ "vision": {
39
+ "filename": "phi-3.5-v-instruct-vision.onnx",
40
+ "inputs": {
41
+ "pixel_values": "pixel_values",
42
+ "image_sizes": "image_sizes"
43
+ },
44
+ "outputs": {
45
+ "image_features": "image_features"
46
+ }
47
+ },
48
+ "eos_token_id": 32007,
49
+ "pad_token_id": 32000,
50
+ "type": "phi3v",
51
+ "vocab_size": 32064
52
+ },
53
+ "search": {
54
+ "diversity_penalty": 0.0,
55
+ "do_sample": false,
56
+ "early_stopping": true,
57
+ "length_penalty": 1.0,
58
+ "max_length": 131072,
59
+ "min_length": 0,
60
+ "no_repeat_ngram_size": 0,
61
+ "num_beams": 1,
62
+ "num_return_sequences": 1,
63
+ "past_present_share_buffer": true,
64
+ "repetition_penalty": 1.0,
65
+ "temperature": 1.0,
66
+ "top_k": 1,
67
+ "top_p": 1.0
68
+ }
69
+ }
gpu/gpu-int4-rtn-block-32/phi-3.5-v-instruct-embedding.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b707f7f659d8585a9253f3b95b1740522f3062a7eb4465f09d93c984743e399d
3
+ size 6091
gpu/gpu-int4-rtn-block-32/phi-3.5-v-instruct-embedding.onnx.data ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e0af51a7c122ed63878262191faa905c1e317c7153185a6f7275e61d22fda63a
3
+ size 197001216
gpu/gpu-int4-rtn-block-32/phi-3.5-v-instruct-text.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d598bf368ed0b84b9d9db91a6a4843a2c92d071bf51df6763daadb3213922204
3
+ size 291883
gpu/gpu-int4-rtn-block-32/phi-3.5-v-instruct-text.onnx.data ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de9df6b7062a3d133af7674041e583534dff5a95758572c15468eb1bf602e576
3
+ size 2120189952
gpu/gpu-int4-rtn-block-32/phi-3.5-v-instruct-vision.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:68c97ef425a57e312224c840aaa25cc76953f334fb8d87d0ad4e3f2033483b9e
3
+ size 916745
gpu/gpu-int4-rtn-block-32/phi-3.5-v-instruct-vision.onnx.data ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:135f523ab8dcbdc081c562abf6548d6867c8b151370af34150739abba8366881
3
+ size 178240008
gpu/gpu-int4-rtn-block-32/processor_config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "processor": {
3
+ "name": "image_processing",
4
+ "transforms": [
5
+ {
6
+ "operation": {
7
+ "name": "decode_image",
8
+ "domain": "com.microsoft.extensions",
9
+ "type": "DecodeImage",
10
+ "attrs": {
11
+ "color_space": "BGR"
12
+ }
13
+ }
14
+ },
15
+ {
16
+ "operation": {
17
+ "name": "convert_to_rgb",
18
+ "domain": "com.microsoft.extensions",
19
+ "type": "ConvertRGB"
20
+ }
21
+ },
22
+ {
23
+ "operation": {
24
+ "name": "phi3_image_transform",
25
+ "domain": "com.microsoft.extensions",
26
+ "type": "Phi3ImageTransform",
27
+ "attrs": {
28
+ "num_crops": 4,
29
+ "num_img_tokens": 144
30
+ }
31
+ }
32
+ }
33
+ ]
34
+ }
35
+ }
gpu/gpu-int4-rtn-block-32/special_tokens_map.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|system|>",
4
+ "<|end|>",
5
+ "<|user|>",
6
+ "<|end|>"
7
+ ],
8
+ "bos_token": {
9
+ "content": "<s>",
10
+ "lstrip": false,
11
+ "normalized": false,
12
+ "rstrip": false,
13
+ "single_word": false
14
+ },
15
+ "eos_token": {
16
+ "content": "<|endoftext|>",
17
+ "lstrip": false,
18
+ "normalized": false,
19
+ "rstrip": false,
20
+ "single_word": false
21
+ },
22
+ "pad_token": {
23
+ "content": "<|endoftext|>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false
28
+ },
29
+ "unk_token": {
30
+ "content": "<unk>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false
35
+ }
36
+ }
gpu/gpu-int4-rtn-block-32/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
gpu/gpu-int4-rtn-block-32/tokenizer_config.json ADDED
@@ -0,0 +1,413 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": true,
27
+ "single_word": false,
28
+ "special": false
29
+ },
30
+ "32000": {
31
+ "content": "<|endoftext|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "32001": {
39
+ "content": "<|assistant|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": true,
43
+ "single_word": false,
44
+ "special": true
45
+ },
46
+ "32002": {
47
+ "content": "<|placeholder1|>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": true,
51
+ "single_word": false,
52
+ "special": true
53
+ },
54
+ "32003": {
55
+ "content": "<|placeholder2|>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": true,
59
+ "single_word": false,
60
+ "special": true
61
+ },
62
+ "32004": {
63
+ "content": "<|placeholder3|>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": true,
67
+ "single_word": false,
68
+ "special": true
69
+ },
70
+ "32005": {
71
+ "content": "<|placeholder4|>",
72
+ "lstrip": false,
73
+ "normalized": false,
74
+ "rstrip": true,
75
+ "single_word": false,
76
+ "special": true
77
+ },
78
+ "32006": {
79
+ "content": "<|system|>",
80
+ "lstrip": false,
81
+ "normalized": false,
82
+ "rstrip": false,
83
+ "single_word": false,
84
+ "special": true
85
+ },
86
+ "32007": {
87
+ "content": "<|end|>",
88
+ "lstrip": false,
89
+ "normalized": false,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": true
93
+ },
94
+ "32008": {
95
+ "content": "<|placeholder5|>",
96
+ "lstrip": false,
97
+ "normalized": false,
98
+ "rstrip": true,
99
+ "single_word": false,
100
+ "special": true
101
+ },
102
+ "32009": {
103
+ "content": "<|placeholder6|>",
104
+ "lstrip": false,
105
+ "normalized": false,
106
+ "rstrip": true,
107
+ "single_word": false,
108
+ "special": true
109
+ },
110
+ "32010": {
111
+ "content": "<|user|>",
112
+ "lstrip": false,
113
+ "normalized": false,
114
+ "rstrip": false,
115
+ "single_word": false,
116
+ "special": true
117
+ },
118
+ "32011": {
119
+ "content": "<|placeholder7|>",
120
+ "lstrip": false,
121
+ "normalized": false,
122
+ "rstrip": true,
123
+ "single_word": false,
124
+ "special": true
125
+ },
126
+ "32012": {
127
+ "content": "<|placeholder8|>",
128
+ "lstrip": false,
129
+ "normalized": false,
130
+ "rstrip": true,
131
+ "single_word": false,
132
+ "special": true
133
+ },
134
+ "32013": {
135
+ "content": "<|placeholder9|>",
136
+ "lstrip": false,
137
+ "normalized": false,
138
+ "rstrip": true,
139
+ "single_word": false,
140
+ "special": true
141
+ },
142
+ "32014": {
143
+ "content": "<|placeholder10|>",
144
+ "lstrip": false,
145
+ "normalized": false,
146
+ "rstrip": true,
147
+ "single_word": false,
148
+ "special": true
149
+ },
150
+ "32015": {
151
+ "content": "<|placeholder11|>",
152
+ "lstrip": false,
153
+ "normalized": false,
154
+ "rstrip": true,
155
+ "single_word": false,
156
+ "special": true
157
+ },
158
+ "32016": {
159
+ "content": "<|placeholder12|>",
160
+ "lstrip": false,
161
+ "normalized": false,
162
+ "rstrip": true,
163
+ "single_word": false,
164
+ "special": true
165
+ },
166
+ "32017": {
167
+ "content": "<|placeholder13|>",
168
+ "lstrip": false,
169
+ "normalized": false,
170
+ "rstrip": true,
171
+ "single_word": false,
172
+ "special": true
173
+ },
174
+ "32018": {
175
+ "content": "<|placeholder14|>",
176
+ "lstrip": false,
177
+ "normalized": false,
178
+ "rstrip": true,
179
+ "single_word": false,
180
+ "special": true
181
+ },
182
+ "32019": {
183
+ "content": "<|placeholder15|>",
184
+ "lstrip": false,
185
+ "normalized": false,
186
+ "rstrip": true,
187
+ "single_word": false,
188
+ "special": true
189
+ },
190
+ "32020": {
191
+ "content": "<|placeholder16|>",
192
+ "lstrip": false,
193
+ "normalized": false,
194
+ "rstrip": true,
195
+ "single_word": false,
196
+ "special": true
197
+ },
198
+ "32021": {
199
+ "content": "<|placeholder17|>",
200
+ "lstrip": false,
201
+ "normalized": false,
202
+ "rstrip": true,
203
+ "single_word": false,
204
+ "special": true
205
+ },
206
+ "32022": {
207
+ "content": "<|placeholder18|>",
208
+ "lstrip": false,
209
+ "normalized": false,
210
+ "rstrip": true,
211
+ "single_word": false,
212
+ "special": true
213
+ },
214
+ "32023": {
215
+ "content": "<|placeholder19|>",
216
+ "lstrip": false,
217
+ "normalized": false,
218
+ "rstrip": true,
219
+ "single_word": false,
220
+ "special": true
221
+ },
222
+ "32024": {
223
+ "content": "<|placeholder20|>",
224
+ "lstrip": false,
225
+ "normalized": false,
226
+ "rstrip": true,
227
+ "single_word": false,
228
+ "special": true
229
+ },
230
+ "32025": {
231
+ "content": "<|placeholder21|>",
232
+ "lstrip": false,
233
+ "normalized": false,
234
+ "rstrip": true,
235
+ "single_word": false,
236
+ "special": true
237
+ },
238
+ "32026": {
239
+ "content": "<|placeholder22|>",
240
+ "lstrip": false,
241
+ "normalized": false,
242
+ "rstrip": true,
243
+ "single_word": false,
244
+ "special": true
245
+ },
246
+ "32027": {
247
+ "content": "<|placeholder23|>",
248
+ "lstrip": false,
249
+ "normalized": false,
250
+ "rstrip": true,
251
+ "single_word": false,
252
+ "special": true
253
+ },
254
+ "32028": {
255
+ "content": "<|placeholder24|>",
256
+ "lstrip": false,
257
+ "normalized": false,
258
+ "rstrip": true,
259
+ "single_word": false,
260
+ "special": true
261
+ },
262
+ "32029": {
263
+ "content": "<|placeholder25|>",
264
+ "lstrip": false,
265
+ "normalized": false,
266
+ "rstrip": true,
267
+ "single_word": false,
268
+ "special": true
269
+ },
270
+ "32030": {
271
+ "content": "<|placeholder26|>",
272
+ "lstrip": false,
273
+ "normalized": false,
274
+ "rstrip": true,
275
+ "single_word": false,
276
+ "special": true
277
+ },
278
+ "32031": {
279
+ "content": "<|placeholder27|>",
280
+ "lstrip": false,
281
+ "normalized": false,
282
+ "rstrip": true,
283
+ "single_word": false,
284
+ "special": true
285
+ },
286
+ "32032": {
287
+ "content": "<|placeholder28|>",
288
+ "lstrip": false,
289
+ "normalized": false,
290
+ "rstrip": true,
291
+ "single_word": false,
292
+ "special": true
293
+ },
294
+ "32033": {
295
+ "content": "<|placeholder29|>",
296
+ "lstrip": false,
297
+ "normalized": false,
298
+ "rstrip": true,
299
+ "single_word": false,
300
+ "special": true
301
+ },
302
+ "32034": {
303
+ "content": "<|placeholder30|>",
304
+ "lstrip": false,
305
+ "normalized": false,
306
+ "rstrip": true,
307
+ "single_word": false,
308
+ "special": true
309
+ },
310
+ "32035": {
311
+ "content": "<|placeholder31|>",
312
+ "lstrip": false,
313
+ "normalized": false,
314
+ "rstrip": true,
315
+ "single_word": false,
316
+ "special": true
317
+ },
318
+ "32036": {
319
+ "content": "<|placeholder32|>",
320
+ "lstrip": false,
321
+ "normalized": false,
322
+ "rstrip": true,
323
+ "single_word": false,
324
+ "special": true
325
+ },
326
+ "32037": {
327
+ "content": "<|placeholder33|>",
328
+ "lstrip": false,
329
+ "normalized": false,
330
+ "rstrip": true,
331
+ "single_word": false,
332
+ "special": true
333
+ },
334
+ "32038": {
335
+ "content": "<|placeholder34|>",
336
+ "lstrip": false,
337
+ "normalized": false,
338
+ "rstrip": true,
339
+ "single_word": false,
340
+ "special": true
341
+ },
342
+ "32039": {
343
+ "content": "<|placeholder35|>",
344
+ "lstrip": false,
345
+ "normalized": false,
346
+ "rstrip": true,
347
+ "single_word": false,
348
+ "special": true
349
+ },
350
+ "32040": {
351
+ "content": "<|placeholder36|>",
352
+ "lstrip": false,
353
+ "normalized": false,
354
+ "rstrip": true,
355
+ "single_word": false,
356
+ "special": true
357
+ },
358
+ "32041": {
359
+ "content": "<|placeholder37|>",
360
+ "lstrip": false,
361
+ "normalized": false,
362
+ "rstrip": true,
363
+ "single_word": false,
364
+ "special": true
365
+ },
366
+ "32042": {
367
+ "content": "<|placeholder38|>",
368
+ "lstrip": false,
369
+ "normalized": false,
370
+ "rstrip": true,
371
+ "single_word": false,
372
+ "special": true
373
+ },
374
+ "32043": {
375
+ "content": "<|placeholder39|>",
376
+ "lstrip": false,
377
+ "normalized": false,
378
+ "rstrip": true,
379
+ "single_word": false,
380
+ "special": true
381
+ },
382
+ "32044": {
383
+ "content": "<|image|>",
384
+ "lstrip": false,
385
+ "normalized": false,
386
+ "rstrip": true,
387
+ "single_word": false,
388
+ "special": true
389
+ }
390
+ },
391
+ "additional_special_tokens": [
392
+ "<|system|>",
393
+ "<|end|>",
394
+ "<|user|>",
395
+ "<|end|>"
396
+ ],
397
+ "auto_map": {
398
+ "AutoProcessor": "processing_phi3_v.Phi3VProcessor"
399
+ },
400
+ "bos_token": "<s>",
401
+ "chat_template": "{% for message in messages %}{{'<|' + message['role'] + '|>' + '\n' + message['content'] + '<|end|>\n' }}{% endfor %}{% if add_generation_prompt and messages[-1]['role'] != 'assistant' %}{{- '<|assistant|>\n' -}}{% endif %}",
402
+ "clean_up_tokenization_spaces": false,
403
+ "eos_token": "<|endoftext|>",
404
+ "legacy": false,
405
+ "model_max_length": 131072,
406
+ "pad_token": "<|endoftext|>",
407
+ "padding_side": "right",
408
+ "processor_class": "Phi3VProcessor",
409
+ "sp_model_kwargs": {},
410
+ "tokenizer_class": "LlamaTokenizer",
411
+ "unk_token": "<unk>",
412
+ "use_default_system_prompt": false
413
+ }
onnx/builder.py ADDED
@@ -0,0 +1,232 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import onnx
3
+ import os
4
+ import requests
5
+ import shutil
6
+ import subprocess
7
+ import sys
8
+ import torch
9
+
10
+ from onnxruntime_genai.models.builder import create_model
11
+ from PIL import Image
12
+ from transformers import AutoConfig, AutoProcessor, AutoModelForCausalLM
13
+
14
+
15
+ def build_vision(args):
16
+ # Many images:
17
+ prompt = f"{user_prompt}<|image_1|>\n <|image_2|>\n <|image_3|>\n <|image_4|>\n What is shown in these four images?{prompt_suffix}{assistant_prompt}"
18
+ url = "https://www.ilankelman.org/stopsigns/australia.jpg"
19
+ image_1 = Image.open(requests.get(url, stream=True).raw)
20
+ url = "https://img.freepik.com/free-photo/painting-mountain-lake-with-mountain-background_188544-9126.jpg?w=2000"
21
+ image_2 = Image.open(requests.get(url, stream=True).raw)
22
+ url = "https://th.bing.com/th/id/OIP.gCvQ1vmPVJmrq1nnzM3ZHQHaEo?rs=1&pid=ImgDetMain"
23
+ image_3 = Image.open(requests.get(url, stream=True).raw)
24
+ url = "https://wallpaper.dog/large/10809054.jpg"
25
+ image_4 = Image.open(requests.get(url, stream=True).raw)
26
+ images = [image_1, image_2, image_3, image_4]
27
+ inputs = processor(prompt, images, return_tensors="pt").to(args.execution_provider.replace("dml", "cuda"))
28
+ inputs["pixel_values"] = inputs["pixel_values"].to(args.precision)
29
+
30
+ # TorchScript export
31
+ dummy_inputs = (
32
+ inputs["pixel_values"], # inputs_embeds: Optional[torch.FloatTensor] = None,
33
+ inputs["image_sizes"], # image_sizes: Optional[torch.FloatTensor] = None,
34
+ )
35
+ dynamic_axes = {
36
+ "pixel_values": {0: "num_images", 1: "max_num_crops", 3: "height", 4: "width"},
37
+ "image_sizes": {0: "num_images"},
38
+ "image_features": {0: "num_image_tokens"},
39
+ }
40
+ filename = "phi-3.5-v-instruct-vision.onnx"
41
+
42
+ temp_folder_1 = os.path.join(args.output, "vision_init_export")
43
+ os.makedirs(temp_folder_1, exist_ok=True)
44
+
45
+ fpath_1 = os.path.join(temp_folder_1, filename)
46
+ torch.onnx.export(
47
+ model.model.vision_embed_tokens,
48
+ args=dummy_inputs,
49
+ f=fpath_1,
50
+ export_params=True,
51
+ input_names=["pixel_values", "image_sizes"],
52
+ output_names=["image_features"],
53
+ dynamic_axes=dynamic_axes,
54
+ opset_version=14,
55
+ do_constant_folding=True,
56
+ )
57
+
58
+ onnx.checker.check_model(fpath_1)
59
+ onnx.shape_inference.infer_shapes_path(fpath_1)
60
+ onnx_model = onnx.load_model(fpath_1, load_external_data=True)
61
+
62
+ temp_folder_2 = os.path.join(args.output, "vision_after_export")
63
+ os.makedirs(temp_folder_2, exist_ok=True)
64
+
65
+ fpath_2 = os.path.join(temp_folder_2, filename)
66
+ onnx.save_model(
67
+ onnx_model,
68
+ fpath_2,
69
+ save_as_external_data=True,
70
+ all_tensors_to_one_file=True,
71
+ location=f"{filename}.data",
72
+ size_threshold=0,
73
+ convert_attribute=False,
74
+ )
75
+ shutil.rmtree(temp_folder_1)
76
+
77
+ # ORT transformer optimizer
78
+ temp_folder_3 = os.path.join(args.output, "vision_after_opt")
79
+ fpath_3 = os.path.join(temp_folder_3, filename)
80
+ subprocess.run(
81
+ [
82
+ f"{sys.executable}", "-m", "onnxruntime.transformers.optimizer",
83
+ "--input", fpath_2,
84
+ "--output", fpath_3,
85
+ "--model_type", "clip",
86
+ "--num_heads", str(16),
87
+ "--hidden_size", str(1024),
88
+ "--use_external_data_format",
89
+ "--opt_level", str(0),
90
+ "--disable_shape_inference",
91
+ ]
92
+ )
93
+ shutil.rmtree(temp_folder_2)
94
+
95
+ # ORT 4-bits quantizer
96
+ fpath_4 = os.path.join(args.output, filename)
97
+ cmd = [
98
+ f"{sys.executable}", "-m", "onnxruntime.quantization.matmul_4bits_quantizer",
99
+ "--input_model", fpath_3,
100
+ "--output_model", fpath_4,
101
+ "--block_size", str(32),
102
+ ]
103
+ if args.precision == torch.float32: cmd.extend(["--accuracy_level", str(4)])
104
+ subprocess.run(cmd)
105
+ shutil.rmtree(temp_folder_3)
106
+
107
+
108
+ def build_embedding(args):
109
+ # TorchScript export
110
+ batch_size, sequence_length, num_img_tokens = 2, 8, 2
111
+ inputs = {
112
+ "input_ids": torch.randint(low=0, high=config.vocab_size, size=(batch_size, sequence_length), device=args.execution_provider.replace("dml", "cuda"), dtype=torch.int64),
113
+ "image_features": torch.randn(num_img_tokens, config.hidden_size, device=args.execution_provider.replace("dml", "cuda"), dtype=args.precision),
114
+ "inputs_embeds": torch.randn(batch_size, sequence_length, config.hidden_size, device=args.execution_provider.replace("dml", "cuda"), dtype=args.precision),
115
+ }
116
+ inputs["input_ids"][0][0] = -1
117
+ inputs["input_ids"][0][1] = -1
118
+ dummy_inputs = (
119
+ inputs["input_ids"], # input_ids: torch.LongTensor
120
+ inputs["image_features"], # image_features: Optional[torch.FloatTensor] = None,
121
+ )
122
+ dynamic_axes = {
123
+ "input_ids": {0: "batch_size", 1: "sequence_length"},
124
+ "image_features": {0: "num_image_tokens"},
125
+ "inputs_embeds": {0: "batch_size", 1: "sequence_length"},
126
+ }
127
+ filename = "phi-3.5-v-instruct-embedding.onnx"
128
+
129
+ temp_folder_1 = os.path.join(args.output, "embedding_init_export")
130
+ os.makedirs(temp_folder_1, exist_ok=True)
131
+
132
+ fpath_1 = os.path.join(temp_folder_1, filename)
133
+ torch.onnx.export(
134
+ model.model.combined_embed,
135
+ args=dummy_inputs,
136
+ f=fpath_1,
137
+ export_params=True,
138
+ input_names=["input_ids", "image_features"],
139
+ output_names=["inputs_embeds"],
140
+ dynamic_axes=dynamic_axes,
141
+ opset_version=14,
142
+ do_constant_folding=True,
143
+ )
144
+
145
+ onnx.checker.check_model(fpath_1)
146
+ onnx.shape_inference.infer_shapes_path(fpath_1)
147
+ onnx_model = onnx.load_model(fpath_1, load_external_data=True)
148
+
149
+ fpath_2 = os.path.join(args.output, filename)
150
+ onnx.save_model(
151
+ onnx_model,
152
+ fpath_2,
153
+ save_as_external_data=True,
154
+ all_tensors_to_one_file=True,
155
+ location=f"{filename}.data",
156
+ size_threshold=0,
157
+ convert_attribute=False,
158
+ )
159
+ shutil.rmtree(temp_folder_1)
160
+
161
+
162
+ def build_text(args):
163
+ # Create ONNX model
164
+ model_name = None
165
+ precision = "int4"
166
+ extra_options = {
167
+ "exclude_embeds": "true",
168
+ "filename": "phi-3.5-v-instruct-text.onnx",
169
+ }
170
+ if args.precision == torch.float32: extra_options["int4_accuracy_level"] = 4
171
+ create_model(model_name, args.input, args.output, precision, args.execution_provider, args.cache_dir, **extra_options)
172
+
173
+
174
+ def get_args():
175
+ parser = argparse.ArgumentParser()
176
+
177
+ parser.add_argument(
178
+ "-i",
179
+ "--input",
180
+ required=True,
181
+ help="Path to folder on disk containing the Hugging Face config, model, tokenizer, etc.",
182
+ )
183
+
184
+ parser.add_argument(
185
+ "-o",
186
+ "--output",
187
+ required=True,
188
+ help="Path to folder to store ONNX model and additional files (e.g. GenAI config, external data files, etc.)",
189
+ )
190
+
191
+ parser.add_argument(
192
+ "-p",
193
+ "--precision",
194
+ required=True,
195
+ choices=["fp16", "fp32"],
196
+ help="Precision to export PyTorch components with",
197
+ )
198
+
199
+ parser.add_argument(
200
+ "-e",
201
+ "--execution_provider",
202
+ required=True,
203
+ choices=["cpu", "cuda", "dml"],
204
+ help="Execution provider for Phi-3.5 vision components",
205
+ )
206
+
207
+ parser.add_argument(
208
+ "-c",
209
+ "--cache_dir",
210
+ required=False,
211
+ default=os.path.join('.', 'cache_dir'),
212
+ help="Cache directory for Hugging Face files and temporary ONNX external data files",
213
+ )
214
+
215
+ args = parser.parse_args()
216
+ args.precision = torch.float16 if args.precision == "fp16" else torch.float32
217
+ return args
218
+
219
+ if __name__ == "__main__":
220
+ user_prompt = '<|user|>\n'
221
+ assistant_prompt = '<|assistant|>\n'
222
+ prompt_suffix = "<|end|>\n"
223
+
224
+ args = get_args()
225
+ config = AutoConfig.from_pretrained(args.input, trust_remote_code=True)
226
+ processor = AutoProcessor.from_pretrained(args.input, trust_remote_code=True)
227
+ model = AutoModelForCausalLM.from_pretrained(args.input, trust_remote_code=True, torch_dtype=args.precision).to(args.execution_provider.replace("dml", "cuda"))
228
+
229
+ # Build model components
230
+ build_vision(args)
231
+ build_embedding(args)
232
+ build_text(args)
onnx/config.json ADDED
@@ -0,0 +1,151 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Phi-3.5-vision-instruct",
3
+ "architectures": [
4
+ "Phi3VForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "auto_map": {
8
+ "AutoConfig": "configuration_phi3_v.Phi3VConfig",
9
+ "AutoModelForCausalLM": "modeling_phi3_v.Phi3VForCausalLM"
10
+ },
11
+ "bos_token_id": 1,
12
+ "embd_layer": {
13
+ "embedding_cls": "image",
14
+ "hd_transform_order": "sub_glb",
15
+ "projection_cls": "mlp",
16
+ "use_hd_transform": true,
17
+ "with_learnable_separator": true
18
+ },
19
+ "embd_pdrop": 0.0,
20
+ "eos_token_id": 2,
21
+ "hidden_act": "silu",
22
+ "hidden_size": 3072,
23
+ "img_processor": {
24
+ "image_dim_out": 1024,
25
+ "model_name": "openai/clip-vit-large-patch14-336",
26
+ "name": "clip_vision_model",
27
+ "num_img_tokens": 144
28
+ },
29
+ "initializer_range": 0.02,
30
+ "intermediate_size": 8192,
31
+ "max_position_embeddings": 131072,
32
+ "model_type": "phi3_v",
33
+ "num_attention_heads": 32,
34
+ "num_hidden_layers": 32,
35
+ "num_key_value_heads": 32,
36
+ "original_max_position_embeddings": 4096,
37
+ "pad_token_id": 32000,
38
+ "resid_pdrop": 0.0,
39
+ "rms_norm_eps": 1e-05,
40
+ "rope_scaling": {
41
+ "long_factor": [
42
+ 1.0800000429153442,
43
+ 1.1100000143051147,
44
+ 1.1399999856948853,
45
+ 1.340000033378601,
46
+ 1.5899999141693115,
47
+ 1.600000023841858,
48
+ 1.6200000047683716,
49
+ 2.620000123977661,
50
+ 3.2300000190734863,
51
+ 3.2300000190734863,
52
+ 4.789999961853027,
53
+ 7.400000095367432,
54
+ 7.700000286102295,
55
+ 9.09000015258789,
56
+ 12.199999809265137,
57
+ 17.670000076293945,
58
+ 24.46000099182129,
59
+ 28.57000160217285,
60
+ 30.420001983642578,
61
+ 30.840002059936523,
62
+ 32.590003967285156,
63
+ 32.93000411987305,
64
+ 42.320003509521484,
65
+ 44.96000289916992,
66
+ 50.340003967285156,
67
+ 50.45000457763672,
68
+ 57.55000305175781,
69
+ 57.93000411987305,
70
+ 58.21000289916992,
71
+ 60.1400032043457,
72
+ 62.61000442504883,
73
+ 62.62000274658203,
74
+ 62.71000289916992,
75
+ 63.1400032043457,
76
+ 63.1400032043457,
77
+ 63.77000427246094,
78
+ 63.93000411987305,
79
+ 63.96000289916992,
80
+ 63.970001220703125,
81
+ 64.02999877929688,
82
+ 64.06999969482422,
83
+ 64.08000183105469,
84
+ 64.12000274658203,
85
+ 64.41000366210938,
86
+ 64.4800033569336,
87
+ 64.51000213623047,
88
+ 64.52999877929688,
89
+ 64.83999633789062
90
+ ],
91
+ "short_factor": [
92
+ 1.08,
93
+ 1.1,
94
+ 1.1300000000000001,
95
+ 1.2800000000000002,
96
+ 1.3100000000000003,
97
+ 1.4500000000000004,
98
+ 1.4500000000000004,
99
+ 1.9500000000000008,
100
+ 2.030000000000001,
101
+ 2.4299999999999926,
102
+ 2.5699999999999896,
103
+ 2.9499999999999815,
104
+ 3.729999999999965,
105
+ 3.869999999999962,
106
+ 4.189999999999955,
107
+ 4.43999999999995,
108
+ 4.6399999999999455,
109
+ 4.979999999999938,
110
+ 5.159999999999934,
111
+ 5.279999999999932,
112
+ 5.759999999999922,
113
+ 5.889999999999919,
114
+ 5.889999999999919,
115
+ 5.969999999999917,
116
+ 6.089999999999915,
117
+ 6.2799999999999105,
118
+ 6.7699999999999,
119
+ 6.8899999999998975,
120
+ 7.109999999999893,
121
+ 7.129999999999892,
122
+ 7.179999999999891,
123
+ 7.289999999999889,
124
+ 7.339999999999888,
125
+ 7.559999999999883,
126
+ 7.619999999999882,
127
+ 7.69999999999988,
128
+ 7.879999999999876,
129
+ 7.879999999999876,
130
+ 7.879999999999876,
131
+ 7.939999999999875,
132
+ 7.949999999999875,
133
+ 7.979999999999874,
134
+ 8.19999999999987,
135
+ 8.439999999999864,
136
+ 8.469999999999864,
137
+ 8.589999999999861,
138
+ 8.809999999999857,
139
+ 8.999999999999853
140
+ ],
141
+ "type": "su"
142
+ },
143
+ "rope_theta": 10000.0,
144
+ "sliding_window": 262144,
145
+ "tie_word_embeddings": false,
146
+ "torch_dtype": "bfloat16",
147
+ "transformers_version": "4.38.1",
148
+ "use_cache": true,
149
+ "vocab_size": 32064,
150
+ "_attn_implementation": "eager"
151
+ }
onnx/modeling_phi3_v.py ADDED
@@ -0,0 +1,2085 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ """ PyTorch Phi-3-V model."""
17
+
18
+ import inspect
19
+ import math
20
+ import warnings
21
+ from typing import List, Optional, Tuple, Union
22
+
23
+ import torch
24
+ import torch.nn.functional as F
25
+ import torch.utils.checkpoint
26
+ from torch import nn
27
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
28
+
29
+ from transformers.activations import ACT2FN
30
+ from transformers.cache_utils import Cache, DynamicCache
31
+ from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask
32
+ from transformers.modeling_outputs import (
33
+ BaseModelOutputWithPast,
34
+ CausalLMOutputWithPast,
35
+ SequenceClassifierOutputWithPast,
36
+ TokenClassifierOutput,
37
+ )
38
+ from transformers.modeling_utils import PreTrainedModel
39
+ from transformers.utils import (
40
+ add_code_sample_docstrings,
41
+ add_start_docstrings,
42
+ add_start_docstrings_to_model_forward,
43
+ is_flash_attn_greater_or_equal_2_10,
44
+ logging,
45
+ replace_return_docstrings,
46
+ )
47
+ from .configuration_phi3_v import Phi3VConfig
48
+
49
+ try:
50
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
51
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
52
+
53
+ _flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
54
+ except ImportError:
55
+ pass
56
+
57
+ import torch
58
+ from torch import nn
59
+ from transformers import CLIPVisionConfig, CLIPVisionModel, PretrainedConfig
60
+ from transformers.models.clip.modeling_clip import CLIPAttention
61
+ from transformers.utils import logging
62
+
63
+ logger = logging.get_logger(__name__)
64
+
65
+
66
+ MAX_INPUT_ID = int(1e9)
67
+
68
+ CLIP_VIT_LARGE_PATCH14_336_CONFIG = CLIPVisionConfig(
69
+ attention_dropout=0.0,
70
+ dropout=0.0,
71
+ hidden_act="quick_gelu",
72
+ hidden_size=1024,
73
+ image_size=336,
74
+ initializer_factor=1.0,
75
+ initializer_range=0.02,
76
+ intermediate_size=4096,
77
+ layer_norm_eps=1e-05,
78
+ num_attention_heads=16,
79
+ num_channels=3,
80
+ num_hidden_layers=24,
81
+ patch_size=14,
82
+ projection_dim=768,
83
+ attn_implementation="eager",
84
+ )
85
+
86
+ class CLIPAttentionFA2(CLIPAttention):
87
+ """Add flash attention 2 to CLIPAttention. (This is only used in the vision encoder)"""
88
+
89
+ def forward(self,
90
+ hidden_states,
91
+ attention_mask=None,
92
+ causal_attention_mask=None,
93
+ output_attentions=False,
94
+ ):
95
+ """Input shape: Batch x Time x Channel"""
96
+
97
+ assert attention_mask is None, "CLIPAttentionFA2 does not support attention_mask"
98
+ assert causal_attention_mask is None, "CLIPAttentionFA2 does not support causal_attention_mask"
99
+ assert output_attentions is False, "CLIPAttentionFA2 does not support output_attentions"
100
+
101
+ bsz, tgt_len, embed_dim = hidden_states.size()
102
+ query_states = self.q_proj(hidden_states).reshape(bsz, tgt_len, self.num_heads, self.head_dim)
103
+ key_states = self.k_proj(hidden_states).reshape(bsz, tgt_len, self.num_heads, self.head_dim)
104
+ value_states = self.v_proj(hidden_states).reshape(bsz, tgt_len, self.num_heads, self.head_dim)
105
+
106
+ attn_output = flash_attn_func(
107
+ query_states,
108
+ key_states,
109
+ value_states,
110
+ dropout_p=self.dropout if self.training else 0.0,
111
+ softmax_scale=self.scale,
112
+ causal=False,
113
+ ).reshape(bsz, tgt_len, embed_dim)
114
+
115
+ attn_output = self.out_proj(attn_output)
116
+ return attn_output, None
117
+
118
+
119
+ def reshape_hd_patches_2x2merge(image_features, h_crop, w_crop):
120
+ """
121
+ image_features: (num_images*num_crops, 24*24, 1024)
122
+ output: (num_images, h_crop*12, w_crop*12, 4096), h_crop*w_crop == num_crops
123
+ """
124
+ N, L, C = image_features.shape
125
+ assert L == 24 * 24 and C == 1024 and N % (h_crop * w_crop) == 0
126
+ num_images = torch.tensor(N // (h_crop * w_crop), dtype=torch.int64)
127
+ H = torch.tensor(int(L**0.5), dtype=torch.int64)
128
+ H_div_2 = torch.tensor(H // 2, dtype=torch.int64)
129
+
130
+ image_features_hd = (
131
+ image_features.reshape(N, H, H, C) # N, 24, 24, 1024
132
+ .reshape(N, H_div_2, 2, H_div_2, 2, C) # N, 12, 2, 12, 2, 1024
133
+ .permute(0, 1, 3, 2, 4, 5) # N, 12, 12, 2, 2, 1024
134
+ .reshape(N, -1, 4 * C) # N, 144, 4096
135
+ .reshape(
136
+ num_images, h_crop, w_crop, H_div_2, H_div_2, -1
137
+ ) # n_img, h_crop, w_crop, 12, 12, 4096
138
+ .permute(0, 1, 3, 2, 4, 5) # n_img, h_crop, 12, w_crop, 12, 4096
139
+ .reshape(
140
+ num_images, h_crop * H_div_2, w_crop * H_div_2, 4 * C
141
+ ) # n_img, h_crop*12, w_crop*12, 4096
142
+ )
143
+
144
+ return image_features_hd
145
+
146
+
147
+ def add_image_newline(image_features_hd, sub_GN):
148
+ """
149
+ image_features_hd: (num_images, h_crop*12, w_crop*12, 4096)
150
+ output: (num_images, (h_crop*12) * (w_crop*12+1), 4096)
151
+ """
152
+ num_images, h, w, hid_dim = image_features_hd.shape
153
+ # add the newline token to the HD image feature patches
154
+ newline_embeddings = sub_GN.expand(num_images, h, -1, -1) # (n_img, h, 1, hid_dim)
155
+ image_features_hd_newline = torch.cat(
156
+ [image_features_hd, newline_embeddings], dim=2
157
+ ).reshape(num_images, -1, hid_dim)
158
+ return image_features_hd_newline
159
+
160
+
161
+ @torch.jit.script_if_tracing
162
+ def get_image_embeddings(image_dim_out, image_sizes, image_features, global_image_features_hd_newline):
163
+ """
164
+ Get image embeddings for all images.
165
+ Need a for loop to process each image because of different image sizes
166
+ (patch arrangement is different for each image)
167
+ """
168
+ glb_GN = torch.zeros(1, 1, image_dim_out * 4).to(image_features.device)
169
+ sub_GN = torch.zeros(1, 1, 1, image_dim_out * 4).to(image_features.device)
170
+
171
+ all_image_embeddings = torch.empty(0, 4096).to(image_features.device)
172
+ for i, img_size in enumerate(image_sizes):
173
+ # h, w = img_size
174
+ h, w = img_size[0], img_size[1]
175
+ h_crop = torch.tensor(h // 336, dtype=torch.int64)
176
+ w_crop = torch.tensor(w // 336, dtype=torch.int64)
177
+ num_crops = h_crop * w_crop
178
+
179
+ # NOTE: real num_crops is padded
180
+ # (num_crops, 24*24, 1024)
181
+ sub_image_features = image_features[i, 1 : 1 + num_crops]
182
+ sub_image_features_hd = reshape_hd_patches_2x2merge(sub_image_features, h_crop, w_crop)
183
+ sub_image_features_hd_newline = add_image_newline(sub_image_features_hd, sub_GN)
184
+
185
+ # # [sub features, separator, global features]
186
+ # all_image_embeddings.extend(
187
+ # [
188
+ # sub_image_features_hd_newline.squeeze(0), # (h_crop*12*(w_crop*12+1), 4096)
189
+ # self.glb_GN.squeeze(0),
190
+ # global_image_features_hd_newline[i],
191
+ # ]
192
+ # )
193
+
194
+ # [sub features, separator, global features]
195
+ all_image_embeddings = torch.cat(
196
+ [
197
+ all_image_embeddings,
198
+ sub_image_features_hd_newline.view(-1, 4096), # (h_crop*12*(w_crop*12+1), 4096)
199
+ glb_GN.view(-1, 4096),
200
+ global_image_features_hd_newline[i],
201
+ ]
202
+ )
203
+
204
+ return all_image_embeddings
205
+
206
+
207
+ @torch.jit.script_if_tracing
208
+ def clamp_input_ids(input_ids: torch.LongTensor, image_features: torch.FloatTensor, vocab_size: int):
209
+ if image_features.numel():
210
+ input_shape = input_ids.size()
211
+ input_ids = input_ids.view(-1, input_shape[-1])
212
+
213
+ # positions for image tokens
214
+ condition = (input_ids < 0) & (input_ids > -int(1e9))
215
+ positions = torch.where(condition)
216
+ # has_image = len(positions[0].tolist()) > 0
217
+ input_ids = input_ids.clamp_min(0).clamp_max(vocab_size).detach()
218
+
219
+ return input_ids, positions
220
+
221
+ return input_ids, torch.where(torch.zeros((1, 1), dtype=torch.bool))
222
+
223
+
224
+ @torch.jit.script_if_tracing
225
+ def select_logic(hidden_states: torch.FloatTensor, image_features: torch.FloatTensor, positions: List[torch.LongTensor]):
226
+ if image_features.numel():
227
+ # apply 'select' logic
228
+ hidden_states = hidden_states.index_put(
229
+ positions, image_features, accumulate=False
230
+ )
231
+
232
+ return hidden_states
233
+
234
+
235
+ class Phi3Embedding(nn.Module):
236
+ """Phi3 embedding for text-only and vision + text."""
237
+ def __init__(self, wte, vocab_size):
238
+ super().__init__()
239
+ self.wte = wte
240
+ self.vocab_size = vocab_size
241
+
242
+ def forward(self, input_ids: torch.LongTensor, image_features: torch.FloatTensor) -> torch.FloatTensor:
243
+ input_ids, positions = clamp_input_ids(input_ids, image_features, self.vocab_size)
244
+ hidden_states = self.wte(input_ids)
245
+ hidden_states = select_logic(hidden_states, image_features, positions)
246
+ return hidden_states
247
+
248
+
249
+ class Phi3ImageEmbedding(nn.Module):
250
+ """Phi3 Image embedding."""
251
+
252
+ def __init__(self, config: PretrainedConfig, wte=None, **kwargs) -> None:
253
+ super().__init__()
254
+
255
+ # n_embed or hidden_size
256
+ hidden_size = config.n_embd if hasattr(config, 'n_embd') else config.hidden_size
257
+ if hasattr(config, 'embd_pdrop') or hasattr(config, 'embed_pdrop'):
258
+ embd_drop = config.embd_pdrop if hasattr(config, 'embd_pdrop') else config.embed_pdrop
259
+ self.drop = nn.Dropout(embd_drop)
260
+ else:
261
+ self.drop = None
262
+
263
+ self.wte = wte
264
+
265
+ if isinstance(config.img_processor, dict) and config.img_processor.get('name', None) == 'clip_vision_model':
266
+ assert 'model_name' in config.img_processor, 'model_name must be provided for CLIPVisionModel'
267
+ assert 'image_dim_out' in config.img_processor, 'image_dim_out must be provided for CLIPVisionModel'
268
+ assert 'num_img_tokens' in config.img_processor, 'num_img_tokens must be provided for CLIPVisionModel'
269
+ assert config.img_processor['model_name'] == 'openai/clip-vit-large-patch14-336'
270
+ clip_config = CLIP_VIT_LARGE_PATCH14_336_CONFIG
271
+ self.img_processor = CLIPVisionModel(clip_config)
272
+ image_dim_out = config.img_processor['image_dim_out']
273
+ self.num_img_tokens = config.img_processor['num_img_tokens']
274
+
275
+ # FA2 in CLIP
276
+ if config._attn_implementation == 'flash_attention_2':
277
+ for layer in self.img_processor.vision_model.encoder.layers:
278
+ clip_fa2 = CLIPAttentionFA2(clip_config)
279
+ del layer.self_attn
280
+ layer.self_attn = clip_fa2
281
+ else:
282
+ raise NotImplementedError(f'img_processor = {config.img_processor}, not implemented')
283
+
284
+ self.image_dim_out = image_dim_out
285
+ self.img_sizes = None
286
+
287
+ # global_gn and sub_gn for hd transform, serves as line separator
288
+ self.use_hd_transform = kwargs.get('use_hd_transform', False)
289
+ self.with_learnable_separator = kwargs.get('with_learnable_separator', False)
290
+ self.hd_transform_order = kwargs.get('hd_transform_order', 'glb_sub')
291
+ # with_hd_transform and with_learnable_separator should have same value
292
+ assert self.use_hd_transform == self.with_learnable_separator, 'use_hd_transform and with_learnable_separator should have same value'
293
+ if self.with_learnable_separator:
294
+ assert self.use_hd_transform, 'learnable separator is only for hd transform'
295
+ # 1024 * 4, merge spatial to channel dimension
296
+ self.glb_GN = nn.Parameter(torch.zeros([1, 1, self.image_dim_out * 4]))
297
+ self.sub_GN = nn.Parameter(torch.zeros([1, 1, 1, self.image_dim_out * 4]))
298
+ logger.info(f'learnable separator enabled for hd transform, hd_transform_order = {self.hd_transform_order}')
299
+
300
+ projection_cls = kwargs.get('projection_cls', 'linear')
301
+ if projection_cls == 'linear':
302
+ self.img_projection = nn.Linear(image_dim_out, hidden_size)
303
+ elif projection_cls == 'mlp' and self.use_hd_transform:
304
+ dim_projection = hidden_size
305
+ depth = 2
306
+ layers = [nn.Linear(image_dim_out * 4, dim_projection)]
307
+ for _ in range(1, depth):
308
+ layers.extend([nn.GELU(),
309
+ nn.Linear(dim_projection, dim_projection)])
310
+ self.img_projection = nn.Sequential(*layers)
311
+ elif projection_cls == 'mlp':
312
+ dim_projection = hidden_size
313
+ depth = 2
314
+ layers = [nn.Linear(image_dim_out, dim_projection)]
315
+ for _ in range(1, depth):
316
+ layers.extend([nn.GELU(),
317
+ nn.Linear(dim_projection, dim_projection)])
318
+ self.img_projection = nn.Sequential(*layers)
319
+ else:
320
+ raise NotImplementedError(f'projection_cls = {projection_cls}, not implemented')
321
+
322
+ self.vocab_size = config.vocab_size
323
+ self.img_features = None
324
+
325
+ if isinstance(config.img_processor, dict):
326
+ self.layer_idx = config.img_processor.get('layer_idx', -2)
327
+ self.type_feature = config.img_processor.get('type_feature', 'patch')
328
+ else:
329
+ self.layer_idx = -2
330
+ self.type_feature = 'patch'
331
+
332
+
333
+ def set_img_features(self, img_features: torch.FloatTensor) -> None:
334
+ self.img_features = img_features
335
+
336
+ def set_img_sizes(self, img_sizes: torch.LongTensor) -> None:
337
+ self.img_sizes = img_sizes
338
+
339
+ def get_img_features(self, img_embeds: torch.FloatTensor) -> torch.FloatTensor:
340
+ LAYER_IDX = self.layer_idx
341
+ TYPE_FEATURE = self.type_feature
342
+
343
+ img_processor_output = self.img_processor(img_embeds, output_hidden_states=True)
344
+ img_feature = img_processor_output.hidden_states[LAYER_IDX]
345
+
346
+ if TYPE_FEATURE == "patch":
347
+ patch_feature = img_feature[:, 1:]
348
+ return patch_feature
349
+
350
+ raise NotImplementedError
351
+
352
+ # def forward(
353
+ # self, input_ids: torch.LongTensor, pixel_values: torch.FloatTensor, image_sizes=None
354
+ # ) -> torch.FloatTensor:
355
+ # input_shape = input_ids.size()
356
+ # input_ids = input_ids.view(-1, input_shape[-1])
357
+
358
+ # # positions for image tokens
359
+ # positions = torch.nonzero((input_ids < 0) & (input_ids > -MAX_INPUT_ID), as_tuple=True)
360
+ # has_image = len(positions[0].tolist()) > 0
361
+ # input_ids = input_ids.clamp_min(0).clamp_max(self.vocab_size).detach()
362
+ # hidden_states = self.wte(input_ids)
363
+
364
+ # if has_image:
365
+ # assert self.use_hd_transform
366
+ # num_images, num_crops, c, h, w = pixel_values.shape
367
+ # assert c == 3 and h == w == 336
368
+ # img_features = self.get_img_features(pixel_values.flatten(0, 1)).reshape(
369
+ # num_images, num_crops, -1, self.image_dim_out
370
+ # )
371
+ # image_features_proj = self.hd_feature_transform(img_features, image_sizes)
372
+ # hidden_states = hidden_states.index_put(
373
+ # positions, image_features_proj, accumulate=False
374
+ # )
375
+
376
+ # if self.drop is not None:
377
+ # hidden_states = self.drop(hidden_states)
378
+
379
+ # return hidden_states
380
+
381
+ def forward(self, pixel_values: torch.FloatTensor, image_sizes=None) -> torch.FloatTensor:
382
+ assert self.use_hd_transform
383
+ num_images, num_crops, c, h, w = pixel_values.shape
384
+ assert c == 3 and h == w == 336
385
+ img_features = self.get_img_features(pixel_values.flatten(0, 1)).reshape(
386
+ num_images, num_crops, -1, self.image_dim_out
387
+ )
388
+ image_features_proj = self.hd_feature_transform(img_features, image_sizes)
389
+
390
+ return image_features_proj
391
+
392
+ def hd_feature_transform(self, image_features, image_sizes):
393
+ """
394
+ image_features: (num_images, num_crops+1, 24*24, 1024)
395
+ """
396
+ assert (
397
+ self.hd_transform_order == 'sub_glb'
398
+ ), f'hd_transform_order `{self.hd_transform_order}` not implemented'
399
+ if isinstance(self.img_projection, nn.Sequential):
400
+ target_device = self.img_projection[0].bias.device
401
+ target_dtype = self.img_projection[0].bias.dtype
402
+ else: # It's a single nn.Linear layer
403
+ target_device = self.img_projection.bias.device
404
+ target_dtype = self.img_projection.bias.dtype
405
+
406
+ global_image_features = image_features[:, 0] # (num_images, 24*24, 1024)
407
+ # global feature can be viewed as a special HD case with num_crops 1x1
408
+ global_image_features_hd = self.reshape_hd_patches_2x2merge(global_image_features, 1, 1)
409
+ global_image_features_hd_newline = self.add_image_newline(global_image_features_hd)
410
+
411
+ # all_image_embeddings = []
412
+ # # need a for loop to process each image because of different image sizes
413
+ # # (patch arrangement is different for each image)
414
+ # for i, img_size in enumerate(image_sizes):
415
+ # h, w = img_size
416
+ # h_crop = h // 336
417
+ # w_crop = w // 336
418
+ # num_crops = h_crop * w_crop
419
+
420
+ # # NOTE: real num_crops is padded
421
+ # # (num_crops, 24*24, 1024)
422
+ # sub_image_features = image_features[i, 1 : 1 + num_crops]
423
+ # sub_image_features_hd = self.reshape_hd_patches_2x2merge(
424
+ # sub_image_features, h_crop, w_crop
425
+ # )
426
+ # sub_image_features_hd_newline = self.add_image_newline(sub_image_features_hd)
427
+
428
+ # # [sub features, separator, global features]
429
+ # all_image_embeddings.extend(
430
+ # [
431
+ # sub_image_features_hd_newline.squeeze(0), # (h_crop*12*(w_crop*12+1), 4096)
432
+ # self.glb_GN.squeeze(0),
433
+ # global_image_features_hd_newline[i],
434
+ # ]
435
+ # )
436
+
437
+ # image_features_proj = self.img_projection(
438
+ # torch.cat(all_image_embeddings, dim=0).to(target_device).to(target_dtype)
439
+ # )
440
+
441
+ # return image_features_proj
442
+
443
+ all_image_embeddings = get_image_embeddings(torch.tensor(self.image_dim_out), image_sizes, image_features, global_image_features_hd_newline)
444
+ image_features_proj = self.img_projection(
445
+ all_image_embeddings.unsqueeze(0).to(target_device).to(target_dtype)
446
+ )
447
+ return image_features_proj.squeeze()
448
+
449
+ def reshape_hd_patches_2x2merge(self, image_features, h_crop, w_crop):
450
+ """
451
+ image_features: (num_images*num_crops, 24*24, 1024)
452
+ output: (num_images, h_crop*12, w_crop*12, 4096), h_crop*w_crop == num_crops
453
+ """
454
+ N, L, C = image_features.shape
455
+ assert L == 24 * 24 and C == 1024 and N % (h_crop * w_crop) == 0
456
+ num_images = N // (h_crop * w_crop)
457
+ H = int(L**0.5)
458
+ image_features_hd = (
459
+ image_features.reshape(N, H, H, C) # N, 24, 24, 1024
460
+ .reshape(N, H // 2, 2, H // 2, 2, C) # N, 12, 2, 12, 2, 1024
461
+ .permute(0, 1, 3, 2, 4, 5) # N, 12, 12, 2, 2, 1024
462
+ .reshape(N, -1, 4 * C) # N, 144, 4096
463
+ .reshape(
464
+ num_images, h_crop, w_crop, H // 2, H // 2, -1
465
+ ) # n_img, h_crop, w_crop, 12, 12, 4096
466
+ .permute(0, 1, 3, 2, 4, 5) # n_img, h_crop, 12, w_crop, 12, 4096
467
+ .reshape(
468
+ num_images, h_crop * H // 2, w_crop * H // 2, 4 * C
469
+ ) # n_img, h_crop*12, w_crop*12, 4096
470
+ )
471
+
472
+ # alternative implementation using einops
473
+ # from einops import rearrange
474
+ # image_features_nhwc = rearrange(
475
+ # image_features,
476
+ # 'N (H W) c -> N H W c',
477
+ # H=H,
478
+ # W=H,
479
+ # )
480
+ # image_features_2x2merge = rearrange(
481
+ # image_features_nhwc,
482
+ # 'N (h h_pool) (w w_pool) c -> N h w (h_pool w_pool c)',
483
+ # h_pool=2,
484
+ # w_pool=2,
485
+ # )
486
+ # image_features_hd = rearrange(
487
+ # image_features_2x2merge,
488
+ # '(n_img h_crop w_crop) h w C -> n_img (h_crop h) (w_crop w) C',
489
+ # h_crop=h_crop,
490
+ # w_crop=w_crop,
491
+ # )
492
+
493
+ return image_features_hd
494
+
495
+ def add_image_newline(self, image_features_hd):
496
+ """
497
+ image_features_hd: (num_images, h_crop*12, w_crop*12, 4096)
498
+ output: (num_images, (h_crop*12) * (w_crop*12+1), 4096)
499
+ """
500
+ num_images, h, w, hid_dim = image_features_hd.shape
501
+ # add the newline token to the HD image feature patches
502
+ newline_embeddings = self.sub_GN.expand(num_images, h, -1, -1) # (n_img, h, 1, hid_dim)
503
+ image_features_hd_newline = torch.cat(
504
+ [image_features_hd, newline_embeddings], dim=2
505
+ ).reshape(num_images, -1, hid_dim)
506
+ return image_features_hd_newline
507
+
508
+
509
+ logger = logging.get_logger(__name__)
510
+
511
+ _CHECKPOINT_FOR_DOC = "microsoft/Phi-3-vision-128k-instruct"
512
+ _CONFIG_FOR_DOC = "Phi3VConfig"
513
+
514
+ PHI3V_PRETRAINED_MODEL_ARCHIVE_LIST = [
515
+ "microsoft/Phi-3-vision-128k-instruct",
516
+ # See all Phi-3 models at https://huggingface.co/models?filter=Phi-3
517
+ ]
518
+
519
+
520
+ # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Phi3
521
+ class Phi3RMSNorm(nn.Module):
522
+ def __init__(self, hidden_size, eps=1e-6):
523
+ """
524
+ Phi3RMSNorm is equivalent to T5LayerNorm
525
+ """
526
+ super().__init__()
527
+ self.weight = nn.Parameter(torch.ones(hidden_size))
528
+ self.variance_epsilon = eps
529
+
530
+ def forward(self, hidden_states):
531
+ input_dtype = hidden_states.dtype
532
+ hidden_states = hidden_states.to(torch.float32)
533
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
534
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
535
+ return self.weight * hidden_states.to(input_dtype)
536
+
537
+
538
+ # Copied from transformers.models.llama.modeling_llama._get_unpad_data
539
+ def _get_unpad_data(attention_mask):
540
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
541
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
542
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
543
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
544
+ return (
545
+ indices,
546
+ cu_seqlens,
547
+ max_seqlen_in_batch,
548
+ )
549
+
550
+
551
+ # Copied from transformers.models.gemma.modeling_gemma.GemmaRotaryEmbedding with gemma->phi3, Gemma->Phi3
552
+ class Phi3RotaryEmbedding(nn.Module):
553
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
554
+ super().__init__()
555
+
556
+ self.dim = dim
557
+ self.max_position_embeddings = max_position_embeddings
558
+ self.base = base
559
+ self.register_buffer("inv_freq", None, persistent=False)
560
+
561
+ @torch.no_grad()
562
+ def forward(self, x, position_ids, seq_len=None):
563
+ # x: [bs, num_attention_heads, seq_len, head_size]
564
+ if self.inv_freq is None:
565
+ self.inv_freq = 1.0 / (
566
+ self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim)
567
+ )
568
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
569
+ position_ids_expanded = position_ids[:, None, :].float()
570
+ # Force float32 since bfloat16 loses precision on long contexts
571
+ # See https://github.com/huggingface/transformers/pull/29285
572
+ device_type = x.device.type
573
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
574
+ with torch.autocast(device_type=device_type, enabled=False):
575
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
576
+ emb = torch.cat((freqs, freqs), dim=-1)
577
+ cos = emb.cos()
578
+ sin = emb.sin()
579
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
580
+
581
+
582
+ class Phi3SuScaledRotaryEmbedding(Phi3RotaryEmbedding):
583
+ def __init__(self, dim, config, device=None):
584
+ super().__init__(dim, config.max_position_embeddings, config.rope_theta, device)
585
+
586
+ self.short_factor = config.rope_scaling["short_factor"]
587
+ self.long_factor = config.rope_scaling["long_factor"]
588
+ self.original_max_position_embeddings = config.original_max_position_embeddings
589
+
590
+ @torch.no_grad()
591
+ def forward(self, x, position_ids, seq_len=None):
592
+ seq_len = torch.max(position_ids) + 1
593
+ if seq_len > self.original_max_position_embeddings:
594
+ ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=x.device)
595
+ else:
596
+ ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=x.device)
597
+
598
+ inv_freq_shape = torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim
599
+ self.inv_freq = 1.0 / (ext_factors * self.base**inv_freq_shape)
600
+
601
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
602
+ position_ids_expanded = position_ids[:, None, :].float()
603
+
604
+ # Force float32 since bfloat16 loses precision on long contexts
605
+ # See https://github.com/huggingface/transformers/pull/29285
606
+ device_type = x.device.type
607
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
608
+ with torch.autocast(device_type=device_type, enabled=False):
609
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
610
+ emb = torch.cat((freqs, freqs), dim=-1)
611
+
612
+ scale = self.max_position_embeddings / self.original_max_position_embeddings
613
+ if scale <= 1.0:
614
+ scaling_factor = 1.0
615
+ else:
616
+ scaling_factor = math.sqrt(1 + math.log(scale) / math.log(self.original_max_position_embeddings))
617
+
618
+ cos = emb.cos() * scaling_factor
619
+ sin = emb.sin() * scaling_factor
620
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
621
+
622
+
623
+ class Phi3YarnScaledRotaryEmbedding(Phi3RotaryEmbedding):
624
+ def __init__(self, dim, config, device=None):
625
+ super().__init__(dim, config.max_position_embeddings, config.rope_theta, device)
626
+
627
+ self.short_factor = config.rope_scaling["short_factor"]
628
+ self.long_factor = config.rope_scaling["long_factor"]
629
+ self.original_max_position_embeddings = config.original_max_position_embeddings
630
+
631
+ @torch.no_grad()
632
+ def forward(self, x, position_ids, seq_len=None):
633
+ seq_len = torch.max(position_ids) + 1
634
+ if seq_len > self.original_max_position_embeddings:
635
+ ext_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=x.device)
636
+ else:
637
+ ext_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=x.device)
638
+
639
+ inv_freq_shape = torch.arange(0, self.dim, 2, dtype=torch.int64, device=x.device).float() / self.dim
640
+ self.inv_freq = 1.0 / (ext_factors * self.base**inv_freq_shape)
641
+
642
+ inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
643
+ position_ids_expanded = position_ids[:, None, :].float()
644
+
645
+ # Force float32 since bfloat16 loses precision on long contexts
646
+ # See https://github.com/huggingface/transformers/pull/29285
647
+ device_type = x.device.type
648
+ device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
649
+ with torch.autocast(device_type=device_type, enabled=False):
650
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
651
+ emb = torch.cat((freqs, freqs), dim=-1)
652
+
653
+ scale = self.max_position_embeddings / self.original_max_position_embeddings
654
+ if scale <= 1.0:
655
+ scaling_factor = 1.0
656
+ else:
657
+ scaling_factor = 0.1 * math.log(scale) + 1.0
658
+
659
+ cos = emb.cos() * scaling_factor
660
+ sin = emb.sin() * scaling_factor
661
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
662
+
663
+
664
+ # Copied from transformers.models.llama.modeling_llama.rotate_half
665
+ def rotate_half(x):
666
+ """Rotates half the hidden dims of the input."""
667
+ x1 = x[..., : x.shape[-1] // 2]
668
+ x2 = x[..., x.shape[-1] // 2 :]
669
+ return torch.cat((-x2, x1), dim=-1)
670
+
671
+
672
+ # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
673
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
674
+ """Applies Rotary Position Embedding to the query and key tensors.
675
+
676
+ Args:
677
+ q (`torch.Tensor`): The query tensor.
678
+ k (`torch.Tensor`): The key tensor.
679
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
680
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
681
+ position_ids (`torch.Tensor`, *optional*):
682
+ Deprecated and unused.
683
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
684
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
685
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
686
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
687
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
688
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
689
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
690
+ Returns:
691
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
692
+ """
693
+ cos = cos.unsqueeze(unsqueeze_dim)
694
+ sin = sin.unsqueeze(unsqueeze_dim)
695
+ q_embed = (q * cos) + (rotate_half(q) * sin)
696
+ k_embed = (k * cos) + (rotate_half(k) * sin)
697
+ return q_embed, k_embed
698
+
699
+
700
+ class Phi3MLP(nn.Module):
701
+ def __init__(self, config):
702
+ super().__init__()
703
+
704
+ self.config = config
705
+ self.gate_up_proj = nn.Linear(config.hidden_size, 2 * config.intermediate_size, bias=False)
706
+ self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
707
+
708
+ self.activation_fn = ACT2FN[config.hidden_act]
709
+
710
+ def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
711
+ up_states = self.gate_up_proj(hidden_states)
712
+
713
+ gate, up_states = up_states.chunk(2, dim=-1)
714
+ up_states = up_states * self.activation_fn(gate)
715
+
716
+ return self.down_proj(up_states)
717
+
718
+
719
+ # Copied from transformers.models.llama.modeling_llama.repeat_kv with llama->phi
720
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
721
+ """
722
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
723
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
724
+ """
725
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
726
+ if n_rep == 1:
727
+ return hidden_states
728
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
729
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
730
+
731
+
732
+ class Phi3Attention(nn.Module):
733
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
734
+
735
+ def __init__(self, config: Phi3VConfig, layer_idx: Optional[int] = None):
736
+ super().__init__()
737
+ self.config = config
738
+ self.layer_idx = layer_idx
739
+ if layer_idx is None:
740
+ logger.warning_once(
741
+ f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
742
+ "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
743
+ "when creating this class."
744
+ )
745
+
746
+ self.attention_dropout = config.attention_dropout
747
+ self.hidden_size = config.hidden_size
748
+ self.num_heads = config.num_attention_heads
749
+ self.head_dim = self.hidden_size // self.num_heads
750
+ self.num_key_value_heads = config.num_key_value_heads
751
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
752
+ self.max_position_embeddings = config.max_position_embeddings
753
+ self.original_max_position_embeddings = config.original_max_position_embeddings
754
+ self.rope_theta = config.rope_theta
755
+ self.rope_scaling = config.rope_scaling
756
+ self.is_causal = True
757
+
758
+ if (self.head_dim * self.num_heads) != self.hidden_size:
759
+ raise ValueError(
760
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
761
+ f" and `num_heads`: {self.num_heads})."
762
+ )
763
+
764
+ op_size = self.num_heads * self.head_dim + 2 * (self.num_key_value_heads * self.head_dim)
765
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
766
+ self.qkv_proj = nn.Linear(self.hidden_size, op_size, bias=False)
767
+ self._init_rope()
768
+
769
+ def _init_rope(self):
770
+ if self.rope_scaling is None:
771
+ self.rotary_emb = Phi3RotaryEmbedding(
772
+ self.head_dim,
773
+ max_position_embeddings=self.max_position_embeddings,
774
+ base=self.rope_theta,
775
+ )
776
+ else:
777
+ scaling_type = self.config.rope_scaling["type"]
778
+ if scaling_type == "su":
779
+ self.rotary_emb = Phi3SuScaledRotaryEmbedding(self.head_dim, self.config)
780
+ elif scaling_type == "yarn":
781
+ self.rotary_emb = Phi3YarnScaledRotaryEmbedding(self.head_dim, self.config)
782
+ else:
783
+ raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
784
+
785
+ def forward(
786
+ self,
787
+ hidden_states: torch.Tensor,
788
+ attention_mask: Optional[torch.Tensor] = None,
789
+ position_ids: Optional[torch.LongTensor] = None,
790
+ past_key_value: Optional[Cache] = None,
791
+ output_attentions: bool = False,
792
+ use_cache: bool = False,
793
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
794
+ logger.warning_once("You are not running the flash-attention implementation, expect numerical differences.")
795
+
796
+ bsz, q_len, _ = hidden_states.size()
797
+
798
+ qkv = self.qkv_proj(hidden_states)
799
+ query_pos = self.num_heads * self.head_dim
800
+ query_states = qkv[..., :query_pos]
801
+ key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
802
+ value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
803
+
804
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
805
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
806
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
807
+
808
+ kv_seq_len = key_states.shape[-2]
809
+ if past_key_value is not None:
810
+ if self.layer_idx is None:
811
+ raise ValueError(
812
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
813
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
814
+ "with a layer index."
815
+ )
816
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
817
+ cos, sin = self.rotary_emb(value_states, position_ids, seq_len=kv_seq_len)
818
+
819
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
820
+
821
+ if past_key_value is not None:
822
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
823
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
824
+
825
+ # repeat k/v heads if n_kv_heads < n_heads
826
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
827
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
828
+
829
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
830
+
831
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
832
+ raise ValueError(
833
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
834
+ f" {attn_weights.size()}"
835
+ )
836
+
837
+ if attention_mask is not None:
838
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
839
+ raise ValueError(
840
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
841
+ )
842
+ attn_weights = attn_weights + attention_mask
843
+
844
+ # upcast attention to fp32
845
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(value_states.dtype)
846
+ attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
847
+
848
+ attn_output = torch.matmul(attn_weights, value_states)
849
+
850
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
851
+ raise ValueError(
852
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
853
+ f" {attn_output.size()}"
854
+ )
855
+
856
+ attn_output = attn_output.transpose(1, 2).contiguous()
857
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
858
+
859
+ attn_output = self.o_proj(attn_output)
860
+
861
+ if not output_attentions:
862
+ attn_weights = None
863
+
864
+ return attn_output, attn_weights, past_key_value
865
+
866
+
867
+ class Phi3FlashAttention2(Phi3Attention):
868
+ """
869
+ Phi-3 flash attention module. This module inherits from `Phi3Attention` as the weights of the module stays
870
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
871
+ flash attention and deal with padding tokens in case the input contains any of them.
872
+ """
873
+
874
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
875
+ def __init__(self, *args, **kwargs):
876
+ super().__init__(*args, **kwargs)
877
+
878
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
879
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
880
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
881
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
882
+
883
+ def forward(
884
+ self,
885
+ hidden_states: torch.Tensor,
886
+ attention_mask: Optional[torch.LongTensor] = None,
887
+ position_ids: Optional[torch.LongTensor] = None,
888
+ past_key_value: Optional[Cache] = None,
889
+ output_attentions: bool = False,
890
+ use_cache: bool = False,
891
+ **kwargs,
892
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
893
+ # Phi3FlashAttention2 attention does not support output_attentions
894
+
895
+ if not _flash_supports_window_size:
896
+ logger.warning_once(
897
+ "The current flash attention version does not support sliding window attention. Please use `attn_implementation='eager'` or upgrade flash-attn library."
898
+ )
899
+ raise ValueError("The current flash attention version does not support sliding window attention.")
900
+
901
+ output_attentions = False
902
+
903
+ if "padding_mask" in kwargs:
904
+ warnings.warn(
905
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
906
+ )
907
+
908
+ # overwrite attention_mask with padding_mask
909
+ attention_mask = kwargs.pop("padding_mask")
910
+
911
+ bsz, q_len, _ = hidden_states.size()
912
+
913
+ qkv = self.qkv_proj(hidden_states)
914
+ query_pos = self.num_heads * self.head_dim
915
+ query_states = qkv[..., :query_pos]
916
+ key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
917
+ value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
918
+
919
+ # Flash attention requires the input to have the shape
920
+ # batch_size x seq_length x head_dim x hidden_dim
921
+ # therefore we just need to keep the original shape
922
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
923
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
924
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
925
+
926
+ kv_seq_len = key_states.shape[-2]
927
+ if past_key_value is not None:
928
+ if self.layer_idx is None:
929
+ raise ValueError(
930
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
931
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
932
+ "with a layer index."
933
+ )
934
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
935
+
936
+ # Because the input can be padded, the absolute sequence length depends on the max position id.
937
+ rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
938
+ cos, sin = self.rotary_emb(value_states, position_ids, seq_len=rotary_seq_len)
939
+
940
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
941
+
942
+ use_sliding_windows = (
943
+ _flash_supports_window_size
944
+ and getattr(self.config, "sliding_window", None) is not None
945
+ and kv_seq_len > self.config.sliding_window
946
+ )
947
+
948
+ if past_key_value is not None:
949
+ # Activate slicing cache only if the config has a value `sliding_windows` attribute
950
+ cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
951
+ if (
952
+ getattr(self.config, "sliding_window", None) is not None
953
+ and kv_seq_len > self.config.sliding_window
954
+ and cache_has_contents
955
+ ):
956
+ slicing_tokens = 1 - self.config.sliding_window
957
+
958
+ past_key = past_key_value[self.layer_idx][0]
959
+ past_value = past_key_value[self.layer_idx][1]
960
+
961
+ past_key = past_key[:, :, slicing_tokens:, :].contiguous()
962
+ past_value = past_value[:, :, slicing_tokens:, :].contiguous()
963
+
964
+ if past_key.shape[-2] != self.config.sliding_window - 1:
965
+ raise ValueError(
966
+ f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
967
+ f" {past_key.shape}"
968
+ )
969
+
970
+ if attention_mask is not None:
971
+ attention_mask = attention_mask[:, slicing_tokens:]
972
+ attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
973
+
974
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
975
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
976
+
977
+ # repeat k/v heads if n_kv_heads < n_heads
978
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
979
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
980
+
981
+ attn_dropout = self.attention_dropout if self.training else 0.0
982
+
983
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
984
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
985
+ # cast them back in the correct dtype just to be sure everything works as expected.
986
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
987
+ # in fp32.
988
+
989
+ if query_states.dtype == torch.float32:
990
+ if torch.is_autocast_enabled():
991
+ target_dtype = torch.get_autocast_gpu_dtype()
992
+ # Handle the case where the model is quantized
993
+ elif hasattr(self.config, "_pre_quantization_dtype"):
994
+ target_dtype = self.config._pre_quantization_dtype
995
+ else:
996
+ target_dtype = self.qkv_proj.weight.dtype
997
+
998
+ logger.warning_once(
999
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
1000
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
1001
+ f" {target_dtype}."
1002
+ )
1003
+
1004
+ query_states = query_states.to(target_dtype)
1005
+ key_states = key_states.to(target_dtype)
1006
+ value_states = value_states.to(target_dtype)
1007
+
1008
+ # Reashape to the expected shape for Flash Attention
1009
+ query_states = query_states.transpose(1, 2)
1010
+ key_states = key_states.transpose(1, 2)
1011
+ value_states = value_states.transpose(1, 2)
1012
+
1013
+ attn_output = self._flash_attention_forward(
1014
+ query_states,
1015
+ key_states,
1016
+ value_states,
1017
+ attention_mask,
1018
+ q_len,
1019
+ dropout=attn_dropout,
1020
+ use_sliding_windows=use_sliding_windows,
1021
+ )
1022
+
1023
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
1024
+ attn_output = self.o_proj(attn_output)
1025
+
1026
+ if not output_attentions:
1027
+ attn_weights = None
1028
+
1029
+ return attn_output, attn_weights, past_key_value
1030
+
1031
+ # Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2._flash_attention_forward
1032
+ def _flash_attention_forward(
1033
+ self,
1034
+ query_states,
1035
+ key_states,
1036
+ value_states,
1037
+ attention_mask,
1038
+ query_length,
1039
+ dropout=0.0,
1040
+ softmax_scale=None,
1041
+ use_sliding_windows=False,
1042
+ ):
1043
+ """
1044
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
1045
+ first unpad the input, then computes the attention scores and pad the final attention scores.
1046
+
1047
+ Args:
1048
+ query_states (`torch.Tensor`):
1049
+ Input query states to be passed to Flash Attention API
1050
+ key_states (`torch.Tensor`):
1051
+ Input key states to be passed to Flash Attention API
1052
+ value_states (`torch.Tensor`):
1053
+ Input value states to be passed to Flash Attention API
1054
+ attention_mask (`torch.Tensor`):
1055
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
1056
+ position of padding tokens and 1 for the position of non-padding tokens.
1057
+ dropout (`float`):
1058
+ Attention dropout
1059
+ softmax_scale (`float`, *optional*):
1060
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
1061
+ use_sliding_windows (`bool`, *optional*):
1062
+ Whether to activate sliding window attention.
1063
+ """
1064
+ if not self._flash_attn_uses_top_left_mask:
1065
+ causal = self.is_causal
1066
+ else:
1067
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
1068
+ causal = self.is_causal and query_length != 1
1069
+
1070
+ # Contains at least one padding token in the sequence
1071
+ if attention_mask is not None:
1072
+ batch_size = query_states.shape[0]
1073
+ query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
1074
+ query_states, key_states, value_states, attention_mask, query_length
1075
+ )
1076
+
1077
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
1078
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
1079
+
1080
+ if not use_sliding_windows:
1081
+ attn_output_unpad = flash_attn_varlen_func(
1082
+ query_states,
1083
+ key_states,
1084
+ value_states,
1085
+ cu_seqlens_q=cu_seqlens_q,
1086
+ cu_seqlens_k=cu_seqlens_k,
1087
+ max_seqlen_q=max_seqlen_in_batch_q,
1088
+ max_seqlen_k=max_seqlen_in_batch_k,
1089
+ dropout_p=dropout,
1090
+ softmax_scale=softmax_scale,
1091
+ causal=causal,
1092
+ )
1093
+ else:
1094
+ attn_output_unpad = flash_attn_varlen_func(
1095
+ query_states,
1096
+ key_states,
1097
+ value_states,
1098
+ cu_seqlens_q=cu_seqlens_q,
1099
+ cu_seqlens_k=cu_seqlens_k,
1100
+ max_seqlen_q=max_seqlen_in_batch_q,
1101
+ max_seqlen_k=max_seqlen_in_batch_k,
1102
+ dropout_p=dropout,
1103
+ softmax_scale=softmax_scale,
1104
+ causal=causal,
1105
+ window_size=(self.config.sliding_window, self.config.sliding_window),
1106
+ )
1107
+
1108
+ attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
1109
+ else:
1110
+ if not use_sliding_windows:
1111
+ attn_output = flash_attn_func(
1112
+ query_states,
1113
+ key_states,
1114
+ value_states,
1115
+ dropout,
1116
+ softmax_scale=softmax_scale,
1117
+ causal=causal,
1118
+ )
1119
+ else:
1120
+ attn_output = flash_attn_func(
1121
+ query_states,
1122
+ key_states,
1123
+ value_states,
1124
+ dropout,
1125
+ softmax_scale=softmax_scale,
1126
+ causal=causal,
1127
+ window_size=(self.config.sliding_window, self.config.sliding_window),
1128
+ )
1129
+
1130
+ return attn_output
1131
+
1132
+ # Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2._upad_input
1133
+ def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
1134
+ batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
1135
+
1136
+ # On the first iteration we need to properly re-create the padding mask
1137
+ # by slicing it on the proper place
1138
+ if kv_seq_len != attention_mask.shape[-1]:
1139
+ attention_mask_num_tokens = attention_mask.shape[-1]
1140
+ attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
1141
+
1142
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
1143
+
1144
+ key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
1145
+ value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
1146
+
1147
+ if query_length == kv_seq_len:
1148
+ query_layer = index_first_axis(
1149
+ query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
1150
+ )
1151
+ cu_seqlens_q = cu_seqlens_k
1152
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
1153
+ indices_q = indices_k
1154
+ elif query_length == 1:
1155
+ max_seqlen_in_batch_q = 1
1156
+ cu_seqlens_q = torch.arange(
1157
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
1158
+ ) # There is a memcpy here, that is very bad.
1159
+ indices_q = cu_seqlens_q[:-1]
1160
+ query_layer = query_layer.squeeze(1)
1161
+ else:
1162
+ # The -q_len: slice assumes left padding.
1163
+ attention_mask = attention_mask[:, -query_length:]
1164
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
1165
+
1166
+ return (
1167
+ query_layer,
1168
+ key_layer,
1169
+ value_layer,
1170
+ indices_q,
1171
+ (cu_seqlens_q, cu_seqlens_k),
1172
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
1173
+ )
1174
+
1175
+
1176
+ # copied from transformers.models.llama.modeling_llama.LlamaSdpaAttention with Llama->Phi3
1177
+ # TODO @Arthur no longer copied from LLama after static cache
1178
+ class Phi3SdpaAttention(Phi3Attention):
1179
+ """
1180
+ Phi3 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
1181
+ `Phi3Attention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
1182
+ SDPA API.
1183
+ """
1184
+
1185
+ # Adapted from Phi3Attention.forward
1186
+ def forward(
1187
+ self,
1188
+ hidden_states: torch.Tensor,
1189
+ attention_mask: Optional[torch.Tensor] = None,
1190
+ position_ids: Optional[torch.LongTensor] = None,
1191
+ past_key_value: Optional[Cache] = None,
1192
+ output_attentions: bool = False,
1193
+ use_cache: bool = False,
1194
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
1195
+ if output_attentions:
1196
+ # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
1197
+ logger.warning_once(
1198
+ "Phi3Model is using Phi3SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
1199
+ 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
1200
+ )
1201
+ return super().forward(
1202
+ hidden_states=hidden_states,
1203
+ attention_mask=attention_mask,
1204
+ position_ids=position_ids,
1205
+ past_key_value=past_key_value,
1206
+ output_attentions=output_attentions,
1207
+ use_cache=use_cache,
1208
+ )
1209
+
1210
+ bsz, q_len, _ = hidden_states.size()
1211
+
1212
+ qkv = self.qkv_proj(hidden_states)
1213
+ query_pos = self.num_heads * self.head_dim
1214
+ query_states = qkv[..., :query_pos]
1215
+ key_states = qkv[..., query_pos : query_pos + self.num_key_value_heads * self.head_dim]
1216
+ value_states = qkv[..., query_pos + self.num_key_value_heads * self.head_dim :]
1217
+
1218
+ query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
1219
+ key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
1220
+ value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
1221
+
1222
+ kv_seq_len = key_states.shape[-2]
1223
+ if past_key_value is not None:
1224
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
1225
+ cos, sin = self.rotary_emb(value_states, position_ids, seq_len=kv_seq_len)
1226
+
1227
+ query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
1228
+
1229
+ if past_key_value is not None:
1230
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
1231
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
1232
+
1233
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
1234
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
1235
+
1236
+ if attention_mask is not None:
1237
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
1238
+ raise ValueError(
1239
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
1240
+ )
1241
+
1242
+ # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
1243
+ # Reference: https://github.com/pytorch/pytorch/issues/112577.
1244
+ if query_states.device.type == "cuda" and attention_mask is not None:
1245
+ query_states = query_states.contiguous()
1246
+ key_states = key_states.contiguous()
1247
+ value_states = value_states.contiguous()
1248
+
1249
+ attn_output = torch.nn.functional.scaled_dot_product_attention(
1250
+ query_states,
1251
+ key_states,
1252
+ value_states,
1253
+ attn_mask=attention_mask,
1254
+ dropout_p=self.attention_dropout if self.training else 0.0,
1255
+ # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
1256
+ is_causal=self.is_causal and attention_mask is None and q_len > 1,
1257
+ )
1258
+
1259
+ attn_output = attn_output.transpose(1, 2).contiguous()
1260
+ attn_output = attn_output.view(bsz, q_len, self.hidden_size)
1261
+
1262
+ attn_output = self.o_proj(attn_output)
1263
+
1264
+ return attn_output, None, past_key_value
1265
+
1266
+
1267
+ PHI3_ATTENTION_CLASSES = {
1268
+ "eager": Phi3Attention,
1269
+ "flash_attention_2": Phi3FlashAttention2,
1270
+ "sdpa": Phi3SdpaAttention,
1271
+ }
1272
+
1273
+
1274
+ class Phi3DecoderLayer(nn.Module):
1275
+ def __init__(self, config: Phi3VConfig, layer_idx: int):
1276
+ super().__init__()
1277
+
1278
+ self.config = config
1279
+ self.self_attn = PHI3_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx=layer_idx)
1280
+
1281
+ self.mlp = Phi3MLP(config)
1282
+ self.input_layernorm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1283
+
1284
+ self.resid_attn_dropout = nn.Dropout(config.resid_pdrop)
1285
+ self.resid_mlp_dropout = nn.Dropout(config.resid_pdrop)
1286
+ self.post_attention_layernorm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1287
+
1288
+ def forward(
1289
+ self,
1290
+ hidden_states: torch.Tensor,
1291
+ attention_mask: Optional[torch.Tensor] = None,
1292
+ position_ids: Optional[torch.LongTensor] = None,
1293
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
1294
+ output_attentions: Optional[bool] = False,
1295
+ use_cache: Optional[bool] = False,
1296
+ **kwargs,
1297
+ ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
1298
+ if "padding_mask" in kwargs:
1299
+ warnings.warn(
1300
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
1301
+ )
1302
+ """
1303
+ Args:
1304
+ hidden_states (`torch.FloatTensor`):
1305
+ input to the layer of shape `(batch, seq_len, embed_dim)`
1306
+ attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
1307
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
1308
+ position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
1309
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range
1310
+ `[0, config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
1311
+ output_attentions (`bool`, *optional*):
1312
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
1313
+ returned tensors for more detail.
1314
+ use_cache (`bool`, *optional*):
1315
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
1316
+ (see `past_key_values`).
1317
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
1318
+ """
1319
+
1320
+ residual = hidden_states
1321
+
1322
+ hidden_states = self.input_layernorm(hidden_states)
1323
+
1324
+ # Self Attention
1325
+ attn_outputs, self_attn_weights, present_key_value = self.self_attn(
1326
+ hidden_states=hidden_states,
1327
+ attention_mask=attention_mask,
1328
+ position_ids=position_ids,
1329
+ past_key_value=past_key_value,
1330
+ output_attentions=output_attentions,
1331
+ use_cache=use_cache,
1332
+ )
1333
+
1334
+ hidden_states = residual + self.resid_attn_dropout(attn_outputs)
1335
+
1336
+ residual = hidden_states
1337
+ hidden_states = self.post_attention_layernorm(hidden_states)
1338
+ hidden_states = self.mlp(hidden_states)
1339
+ hidden_states = residual + self.resid_mlp_dropout(hidden_states)
1340
+
1341
+ outputs = (hidden_states,)
1342
+
1343
+ if output_attentions:
1344
+ outputs += (self_attn_weights,)
1345
+
1346
+ if use_cache:
1347
+ outputs += (present_key_value,)
1348
+
1349
+ return outputs
1350
+
1351
+
1352
+ PHI3V_START_DOCSTRING = r"""
1353
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
1354
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
1355
+ etc.)
1356
+
1357
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
1358
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
1359
+ and behavior.
1360
+
1361
+ Parameters:
1362
+ config ([`Phi3VConfig`]):
1363
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
1364
+ load the weights associated with the model, only the configuration. Check out the
1365
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
1366
+ """
1367
+
1368
+
1369
+ @add_start_docstrings(
1370
+ "The bare Phi-3-V model outputting raw hidden-states without any specific head on top.",
1371
+ PHI3V_START_DOCSTRING,
1372
+ )
1373
+ class Phi3VPreTrainedModel(PreTrainedModel):
1374
+ config_class = Phi3VConfig
1375
+ base_model_prefix = "model"
1376
+ supports_gradient_checkpointing = True
1377
+ _no_split_modules = ["Phi3DecoderLayer"]
1378
+ _skip_keys_device_placement = "past_key_values"
1379
+ _supports_flash_attn_2 = True
1380
+ _supports_sdpa = False
1381
+ _supports_cache_class = True
1382
+
1383
+ _version = "0.0.5"
1384
+
1385
+ def _init_weights(self, module):
1386
+ std = self.config.initializer_range
1387
+ if isinstance(module, nn.Linear):
1388
+ module.weight.data.normal_(mean=0.0, std=std)
1389
+ if module.bias is not None:
1390
+ module.bias.data.zero_()
1391
+ elif isinstance(module, nn.Embedding):
1392
+ module.weight.data.normal_(mean=0.0, std=std)
1393
+ if module.padding_idx is not None:
1394
+ module.weight.data[module.padding_idx].zero_()
1395
+
1396
+
1397
+ PHI3V_INPUTS_DOCSTRING = r"""
1398
+ Args:
1399
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
1400
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
1401
+ it.
1402
+
1403
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1404
+ [`PreTrainedTokenizer.__call__`] for details.
1405
+
1406
+ [What are input IDs?](../glossary#input-ids)
1407
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
1408
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
1409
+
1410
+ - 1 for tokens that are **not masked**,
1411
+ - 0 for tokens that are **masked**.
1412
+
1413
+ [What are attention masks?](../glossary#attention-mask)
1414
+
1415
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1416
+ [`PreTrainedTokenizer.__call__`] for details.
1417
+
1418
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
1419
+ `past_key_values`).
1420
+
1421
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
1422
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
1423
+ information on the default strategy.
1424
+
1425
+ - 1 indicates the head is **not masked**,
1426
+ - 0 indicates the head is **masked**.
1427
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1428
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
1429
+ config.n_positions - 1]`.
1430
+
1431
+ [What are position IDs?](../glossary#position-ids)
1432
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
1433
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
1434
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
1435
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
1436
+
1437
+ Two formats are allowed:
1438
+ - a [`~cache_utils.Cache`] instance;
1439
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
1440
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
1441
+ cache format.
1442
+
1443
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
1444
+ legacy cache format will be returned.
1445
+
1446
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
1447
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
1448
+ of shape `(batch_size, sequence_length)`.
1449
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1450
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
1451
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
1452
+ model's internal embedding lookup matrix.
1453
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)):
1454
+ The tensors corresponding to the input images. Pixel values can be obtained using [`AutoImageProcessor`].
1455
+ See [`Phi3ImageProcessor.__call__`] for details.
1456
+ image_sizes (`torch.LongTensor` of shape `(batch_size, 2)`, *optional*):
1457
+ The sizes of the images in the batch, being (height, width) for each image.
1458
+ use_cache (`bool`, *optional*):
1459
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
1460
+ `past_key_values`).
1461
+ output_attentions (`bool`, *optional*):
1462
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
1463
+ tensors for more detail.
1464
+ output_hidden_states (`bool`, *optional*):
1465
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
1466
+ more detail.
1467
+ return_dict (`bool`, *optional*):
1468
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
1469
+ """
1470
+
1471
+
1472
+ @add_start_docstrings(
1473
+ "The bare Phi-3-V model outputting raw hidden-states without any specific head on top.",
1474
+ PHI3V_START_DOCSTRING,
1475
+ )
1476
+ class Phi3VModel(Phi3VPreTrainedModel):
1477
+ """
1478
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`Phi3DecoderLayer`]
1479
+
1480
+ Args:
1481
+ config: Phi3Config
1482
+ """
1483
+
1484
+ def __init__(self, config: Phi3VConfig):
1485
+ super().__init__(config)
1486
+ self.padding_idx = config.pad_token_id
1487
+ self.vocab_size = config.vocab_size
1488
+
1489
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
1490
+ self.embed_dropout = nn.Dropout(config.embd_pdrop)
1491
+ self.combined_embed = Phi3Embedding(self.embed_tokens, config.vocab_size)
1492
+
1493
+ self.vision_embed_tokens = None
1494
+ if isinstance(config.embd_layer, dict):
1495
+ # vision embedding layer
1496
+ embedding_config = {
1497
+ 'embedding_cls': config.embd_layer['embedding_cls'],
1498
+ **config.embd_layer
1499
+ }
1500
+ self.vision_embed_tokens = Phi3ImageEmbedding(config, wte=self.embed_tokens, **embedding_config)
1501
+ # # set wte the same for vision embedding
1502
+ # self.vision_embed_tokens.wte.weight = self.embed_tokens.weight
1503
+
1504
+ self.layers = nn.ModuleList(
1505
+ [Phi3DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
1506
+ )
1507
+ self._attn_implementation = config._attn_implementation
1508
+ self.norm = Phi3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1509
+
1510
+ self.gradient_checkpointing = False
1511
+ # Initialize weights and apply final processing
1512
+ self.post_init()
1513
+
1514
+ def get_input_embeddings(self):
1515
+ return self.embed_tokens
1516
+
1517
+ def set_input_embeddings(self, value):
1518
+ self.embed_tokens = value
1519
+
1520
+ @add_start_docstrings_to_model_forward(PHI3V_INPUTS_DOCSTRING)
1521
+ def forward(
1522
+ self,
1523
+ input_ids: torch.LongTensor = None,
1524
+ attention_mask: Optional[torch.Tensor] = None,
1525
+ position_ids: Optional[torch.LongTensor] = None,
1526
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1527
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1528
+ pixel_values: Optional[torch.FloatTensor] = None,
1529
+ image_sizes: Optional[torch.LongTensor] = None,
1530
+ use_cache: Optional[bool] = None,
1531
+ output_attentions: Optional[bool] = None,
1532
+ output_hidden_states: Optional[bool] = None,
1533
+ return_dict: Optional[bool] = None,
1534
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
1535
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1536
+ output_hidden_states = (
1537
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1538
+ )
1539
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1540
+
1541
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1542
+
1543
+ # retrieve input_ids and inputs_embeds
1544
+ if input_ids is not None and inputs_embeds is not None:
1545
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
1546
+ elif input_ids is not None:
1547
+ batch_size, seq_length = input_ids.shape[:2]
1548
+ elif inputs_embeds is not None:
1549
+ batch_size, seq_length = inputs_embeds.shape[:2]
1550
+ else:
1551
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
1552
+
1553
+ past_key_values_length = 0
1554
+
1555
+ if self.gradient_checkpointing and self.training:
1556
+ if use_cache:
1557
+ logger.warning_once(
1558
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
1559
+ )
1560
+ use_cache = False
1561
+
1562
+ if use_cache:
1563
+ use_legacy_cache = not isinstance(past_key_values, Cache)
1564
+ if use_legacy_cache:
1565
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
1566
+ past_key_values_length = past_key_values.get_usable_length(seq_length)
1567
+
1568
+ if position_ids is None:
1569
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1570
+ position_ids = torch.arange(
1571
+ past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
1572
+ )
1573
+ position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
1574
+ else:
1575
+ position_ids = position_ids.view(-1, seq_length).long()
1576
+
1577
+ if inputs_embeds is None:
1578
+ if pixel_values is not None and image_sizes is not None:
1579
+ assert self.vision_embed_tokens is not None, "Vision embedding layer is not defined"
1580
+ # inputs_embeds = self.vision_embed_tokens(input_ids, pixel_values=pixel_values, image_sizes=image_sizes)
1581
+ inputs_embeds = self.vision_embed_tokens(pixel_values=pixel_values, image_sizes=image_sizes)
1582
+ else:
1583
+ inputs_embeds = self.embed_tokens(input_ids)
1584
+
1585
+ if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache:
1586
+ is_padding_right = attention_mask[:, -1].sum().item() != batch_size
1587
+ if is_padding_right:
1588
+ raise ValueError(
1589
+ "You are attempting to perform batched generation with padding_side='right'"
1590
+ " this may lead to unexpected behaviour for Flash Attention version of Phi3. Make sure to "
1591
+ " call `tokenizer.padding_side = 'left'` before tokenizing the input. "
1592
+ )
1593
+
1594
+ if self._attn_implementation == "flash_attention_2":
1595
+ # 2d mask is passed through the layers
1596
+ attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
1597
+ else:
1598
+ # 4d mask is passed through the layers
1599
+ attention_mask = _prepare_4d_causal_attention_mask(
1600
+ attention_mask,
1601
+ (batch_size, seq_length),
1602
+ inputs_embeds,
1603
+ past_key_values_length,
1604
+ sliding_window=self.config.sliding_window,
1605
+ )
1606
+
1607
+ hidden_states = inputs_embeds
1608
+
1609
+ # decoder layers
1610
+ all_hidden_states = () if output_hidden_states else None
1611
+ all_self_attns = () if output_attentions else None
1612
+ next_decoder_cache = None
1613
+
1614
+ for decoder_layer in self.layers:
1615
+ if output_hidden_states:
1616
+ all_hidden_states += (hidden_states,)
1617
+
1618
+ if self.gradient_checkpointing and self.training:
1619
+ layer_outputs = self._gradient_checkpointing_func(
1620
+ decoder_layer.__call__,
1621
+ hidden_states,
1622
+ attention_mask,
1623
+ position_ids,
1624
+ past_key_values,
1625
+ output_attentions,
1626
+ use_cache,
1627
+ )
1628
+ else:
1629
+ layer_outputs = decoder_layer(
1630
+ hidden_states,
1631
+ attention_mask=attention_mask,
1632
+ position_ids=position_ids,
1633
+ past_key_value=past_key_values,
1634
+ output_attentions=output_attentions,
1635
+ use_cache=use_cache,
1636
+ )
1637
+
1638
+ hidden_states = layer_outputs[0]
1639
+
1640
+ if use_cache:
1641
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1642
+
1643
+ if output_attentions:
1644
+ all_self_attns += (layer_outputs[1],)
1645
+
1646
+ hidden_states = self.norm(hidden_states)
1647
+
1648
+ # add hidden states from the last decoder layer
1649
+ if output_hidden_states:
1650
+ all_hidden_states += (hidden_states,)
1651
+
1652
+ next_cache = None
1653
+ if use_cache:
1654
+ next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
1655
+ if not return_dict:
1656
+ return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
1657
+ return BaseModelOutputWithPast(
1658
+ last_hidden_state=hidden_states,
1659
+ past_key_values=next_cache,
1660
+ hidden_states=all_hidden_states,
1661
+ attentions=all_self_attns,
1662
+ )
1663
+
1664
+
1665
+ class Phi3VForCausalLM(Phi3VPreTrainedModel):
1666
+ _tied_weights_keys = ["lm_head.weight"]
1667
+
1668
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.__init__ with Llama->Phi3
1669
+ def __init__(self, config):
1670
+ super().__init__(config)
1671
+ self.model = Phi3VModel(config)
1672
+ self.vocab_size = config.vocab_size
1673
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1674
+
1675
+ # Initialize weights and apply final processing
1676
+ self.post_init()
1677
+
1678
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_input_embeddings
1679
+ def get_input_embeddings(self):
1680
+ return self.model.embed_tokens
1681
+
1682
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_input_embeddings
1683
+ def set_input_embeddings(self, value):
1684
+ self.model.embed_tokens = value
1685
+
1686
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_output_embeddings
1687
+ def get_output_embeddings(self):
1688
+ return self.lm_head
1689
+
1690
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_output_embeddings
1691
+ def set_output_embeddings(self, new_embeddings):
1692
+ self.lm_head = new_embeddings
1693
+
1694
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.set_decoder
1695
+ def set_decoder(self, decoder):
1696
+ self.model = decoder
1697
+
1698
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM.get_decoder
1699
+ def get_decoder(self):
1700
+ return self.model
1701
+
1702
+ # Ignore copy
1703
+ @add_start_docstrings_to_model_forward(PHI3V_INPUTS_DOCSTRING)
1704
+ @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1705
+ def forward(
1706
+ self,
1707
+ input_ids: torch.LongTensor = None,
1708
+ attention_mask: Optional[torch.Tensor] = None,
1709
+ position_ids: Optional[torch.LongTensor] = None,
1710
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1711
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1712
+ pixel_values: Optional[torch.FloatTensor] = None,
1713
+ image_sizes: Optional[torch.LongTensor] = None,
1714
+ labels: Optional[torch.LongTensor] = None,
1715
+ use_cache: Optional[bool] = None,
1716
+ output_attentions: Optional[bool] = None,
1717
+ output_hidden_states: Optional[bool] = None,
1718
+ return_dict: Optional[bool] = None,
1719
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1720
+ r"""
1721
+ Args:
1722
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1723
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1724
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1725
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1726
+
1727
+ Returns:
1728
+
1729
+ Example:
1730
+
1731
+ ```python
1732
+ >>> from transformers import AutoTokenizer, Phi3ForCausalLM
1733
+
1734
+ >>> model = Phi3ForCausalLM.from_pretrained("microsoft/phi-3-mini-4k-instruct")
1735
+ >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-3-mini-4k-instruct")
1736
+
1737
+ >>> prompt = "This is an example script ."
1738
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1739
+
1740
+ >>> # Generate
1741
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1742
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1743
+ 'This is an example script .\n Certainly! Below is a sample script that demonstrates a simple task, such as calculating the sum'
1744
+ ```"""
1745
+
1746
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1747
+ output_hidden_states = (
1748
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1749
+ )
1750
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1751
+
1752
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1753
+ outputs = self.model(
1754
+ input_ids=input_ids,
1755
+ attention_mask=attention_mask,
1756
+ position_ids=position_ids,
1757
+ past_key_values=past_key_values,
1758
+ inputs_embeds=inputs_embeds,
1759
+ pixel_values=pixel_values,
1760
+ image_sizes=image_sizes,
1761
+ use_cache=use_cache,
1762
+ output_attentions=output_attentions,
1763
+ output_hidden_states=output_hidden_states,
1764
+ return_dict=return_dict,
1765
+ )
1766
+
1767
+ hidden_states = outputs[0]
1768
+ logits = self.lm_head(hidden_states)
1769
+ logits = logits.float()
1770
+
1771
+ loss = None
1772
+ if labels is not None:
1773
+ # Shift so that tokens < n predict n
1774
+ shift_logits = logits[..., :-1, :].contiguous()
1775
+ shift_labels = labels[..., 1:].contiguous()
1776
+ # Flatten the tokens
1777
+ loss_fct = CrossEntropyLoss()
1778
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1779
+ shift_labels = shift_labels.view(-1)
1780
+ # Enable model parallelism
1781
+ shift_labels = shift_labels.to(shift_logits.device)
1782
+ loss = loss_fct(shift_logits, shift_labels)
1783
+
1784
+ if not return_dict:
1785
+ output = (logits,) + outputs[1:]
1786
+ return (loss,) + output if loss is not None else output
1787
+
1788
+ return CausalLMOutputWithPast(
1789
+ loss=loss,
1790
+ logits=logits,
1791
+ past_key_values=outputs.past_key_values,
1792
+ hidden_states=outputs.hidden_states,
1793
+ attentions=outputs.attentions,
1794
+ )
1795
+
1796
+ # Copied from transformers.models.persimmon.modeling_persimmon.PersimmonForCausalLM.prepare_inputs_for_generation
1797
+ def prepare_inputs_for_generation(
1798
+ self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, pixel_values=None, image_sizes=None, **kwargs
1799
+ ):
1800
+ if past_key_values is not None:
1801
+ if isinstance(past_key_values, Cache):
1802
+ cache_length = past_key_values.get_seq_length()
1803
+ past_length = past_key_values.seen_tokens
1804
+ max_cache_length = past_key_values.get_max_length()
1805
+ else:
1806
+ cache_length = past_length = past_key_values[0][0].shape[2]
1807
+ max_cache_length = None
1808
+
1809
+ # Keep only the unprocessed tokens:
1810
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1811
+ # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
1812
+ # input)
1813
+ if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
1814
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
1815
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1816
+ # input_ids based on the past_length.
1817
+ elif past_length < input_ids.shape[1]:
1818
+ input_ids = input_ids[:, past_length:]
1819
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1820
+
1821
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1822
+ if (
1823
+ max_cache_length is not None
1824
+ and attention_mask is not None
1825
+ and cache_length + input_ids.shape[1] > max_cache_length
1826
+ ):
1827
+ attention_mask = attention_mask[:, -max_cache_length:]
1828
+
1829
+ position_ids = kwargs.get("position_ids", None)
1830
+ if attention_mask is not None and position_ids is None:
1831
+ # create position_ids on the fly for batch generation
1832
+ position_ids = attention_mask.long().cumsum(-1) - 1
1833
+ position_ids.masked_fill_(attention_mask == 0, 1)
1834
+ if past_key_values:
1835
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1836
+
1837
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1838
+ if inputs_embeds is not None and past_key_values is None:
1839
+ model_inputs = {"inputs_embeds": inputs_embeds}
1840
+ else:
1841
+ model_inputs = {"input_ids": input_ids}
1842
+
1843
+ model_inputs.update(
1844
+ {
1845
+ "position_ids": position_ids,
1846
+ "past_key_values": past_key_values,
1847
+ "use_cache": kwargs.get("use_cache"),
1848
+ "attention_mask": attention_mask,
1849
+ "pixel_values": pixel_values,
1850
+ "image_sizes": image_sizes,
1851
+ }
1852
+ )
1853
+ return model_inputs
1854
+
1855
+ @staticmethod
1856
+ # Copied from transformers.models.llama.modeling_llama.LlamaForCausalLM._reorder_cache
1857
+ def _reorder_cache(past_key_values, beam_idx):
1858
+ reordered_past = ()
1859
+ for layer_past in past_key_values:
1860
+ reordered_past += (
1861
+ tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1862
+ )
1863
+ return reordered_past
1864
+
1865
+
1866
+ @add_start_docstrings(
1867
+ """
1868
+ The [`Phi3VModel`] with a sequence classification head on top (linear layer).
1869
+
1870
+ [`Phi3VForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1871
+ (e.g. GPT-2) do.
1872
+
1873
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1874
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1875
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1876
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1877
+ each row of the batch).
1878
+ """,
1879
+ PHI3V_START_DOCSTRING,
1880
+ )
1881
+ # Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->Phi3, LLAMA->PHI3, self.transformer->self.model, transformer_outputs->model_outputs
1882
+ class Phi3VForSequenceClassification(Phi3VPreTrainedModel):
1883
+ def __init__(self, config):
1884
+ super().__init__(config)
1885
+ self.num_labels = config.num_labels
1886
+ self.model = Phi3VModel(config)
1887
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1888
+
1889
+ # Initialize weights and apply final processing
1890
+ self.post_init()
1891
+
1892
+ def get_input_embeddings(self):
1893
+ return self.model.embed_tokens
1894
+
1895
+ def set_input_embeddings(self, value):
1896
+ self.model.embed_tokens = value
1897
+
1898
+ @add_start_docstrings_to_model_forward(PHI3V_INPUTS_DOCSTRING)
1899
+ def forward(
1900
+ self,
1901
+ input_ids: torch.LongTensor = None,
1902
+ attention_mask: Optional[torch.Tensor] = None,
1903
+ position_ids: Optional[torch.LongTensor] = None,
1904
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
1905
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1906
+ pixel_values: Optional[torch.FloatTensor] = None,
1907
+ image_sizes: Optional[torch.LongTensor] = None,
1908
+ labels: Optional[torch.LongTensor] = None,
1909
+ use_cache: Optional[bool] = None,
1910
+ output_attentions: Optional[bool] = None,
1911
+ output_hidden_states: Optional[bool] = None,
1912
+ return_dict: Optional[bool] = None,
1913
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1914
+ r"""
1915
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1916
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
1917
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1918
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1919
+ """
1920
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1921
+
1922
+ model_outputs = self.model(
1923
+ input_ids,
1924
+ attention_mask=attention_mask,
1925
+ position_ids=position_ids,
1926
+ past_key_values=past_key_values,
1927
+ inputs_embeds=inputs_embeds,
1928
+ pixel_values=pixel_values,
1929
+ image_sizes=image_sizes,
1930
+ use_cache=use_cache,
1931
+ output_attentions=output_attentions,
1932
+ output_hidden_states=output_hidden_states,
1933
+ return_dict=return_dict,
1934
+ )
1935
+ hidden_states = model_outputs[0]
1936
+ logits = self.score(hidden_states)
1937
+
1938
+ if input_ids is not None:
1939
+ batch_size = input_ids.shape[0]
1940
+ else:
1941
+ batch_size = inputs_embeds.shape[0]
1942
+
1943
+ if self.config.pad_token_id is None and batch_size != 1:
1944
+ raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1945
+ if self.config.pad_token_id is None:
1946
+ sequence_lengths = -1
1947
+ else:
1948
+ if input_ids is not None:
1949
+ # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
1950
+ sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1951
+ sequence_lengths = sequence_lengths % input_ids.shape[-1]
1952
+ sequence_lengths = sequence_lengths.to(logits.device)
1953
+ else:
1954
+ sequence_lengths = -1
1955
+
1956
+ pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1957
+
1958
+ loss = None
1959
+ if labels is not None:
1960
+ labels = labels.to(logits.device)
1961
+ if self.config.problem_type is None:
1962
+ if self.num_labels == 1:
1963
+ self.config.problem_type = "regression"
1964
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1965
+ self.config.problem_type = "single_label_classification"
1966
+ else:
1967
+ self.config.problem_type = "multi_label_classification"
1968
+
1969
+ if self.config.problem_type == "regression":
1970
+ loss_fct = MSELoss()
1971
+ if self.num_labels == 1:
1972
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1973
+ else:
1974
+ loss = loss_fct(pooled_logits, labels)
1975
+ elif self.config.problem_type == "single_label_classification":
1976
+ loss_fct = CrossEntropyLoss()
1977
+ loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1978
+ elif self.config.problem_type == "multi_label_classification":
1979
+ loss_fct = BCEWithLogitsLoss()
1980
+ loss = loss_fct(pooled_logits, labels)
1981
+ if not return_dict:
1982
+ output = (pooled_logits,) + model_outputs[1:]
1983
+ return ((loss,) + output) if loss is not None else output
1984
+
1985
+ return SequenceClassifierOutputWithPast(
1986
+ loss=loss,
1987
+ logits=pooled_logits,
1988
+ past_key_values=model_outputs.past_key_values,
1989
+ hidden_states=model_outputs.hidden_states,
1990
+ attentions=model_outputs.attentions,
1991
+ )
1992
+
1993
+
1994
+ @add_start_docstrings(
1995
+ """
1996
+ [`Phi3VModel`] with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
1997
+ Named-Entity-Recognition (NER) tasks.
1998
+ """,
1999
+ PHI3V_START_DOCSTRING,
2000
+ )
2001
+ # Copied from transformers.models.mpt.modeling_mpt.MptForTokenClassification with Mpt->Phi3,MPT->PHI3,self.transformer->self.model,transformer_outputs->model_outputs
2002
+ class Phi3VForTokenClassification(Phi3VPreTrainedModel):
2003
+ def __init__(self, config: Phi3VConfig):
2004
+ super().__init__(config)
2005
+ self.num_labels = config.num_labels
2006
+
2007
+ self.model = Phi3VModel(config)
2008
+ if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None:
2009
+ classifier_dropout = config.classifier_dropout
2010
+ elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None:
2011
+ classifier_dropout = config.hidden_dropout
2012
+ else:
2013
+ classifier_dropout = 0.1
2014
+ self.dropout = nn.Dropout(classifier_dropout)
2015
+ self.classifier = nn.Linear(config.hidden_size, config.num_labels)
2016
+
2017
+ # Initialize weights and apply final processing
2018
+ self.post_init()
2019
+
2020
+ @add_start_docstrings_to_model_forward(PHI3V_INPUTS_DOCSTRING)
2021
+ @add_code_sample_docstrings(
2022
+ checkpoint=_CHECKPOINT_FOR_DOC,
2023
+ output_type=TokenClassifierOutput,
2024
+ config_class=_CONFIG_FOR_DOC,
2025
+ )
2026
+ def forward(
2027
+ self,
2028
+ input_ids: Optional[torch.LongTensor] = None,
2029
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
2030
+ attention_mask: Optional[torch.Tensor] = None,
2031
+ inputs_embeds: Optional[torch.Tensor] = None,
2032
+ pixel_values: Optional[torch.FloatTensor] = None,
2033
+ image_sizes: Optional[torch.LongTensor] = None,
2034
+ labels: Optional[torch.Tensor] = None,
2035
+ use_cache: Optional[bool] = None,
2036
+ output_attentions: Optional[bool] = None,
2037
+ output_hidden_states: Optional[bool] = None,
2038
+ return_dict: Optional[bool] = None,
2039
+ **deprecated_arguments,
2040
+ ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
2041
+ r"""
2042
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
2043
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
2044
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
2045
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
2046
+ """
2047
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
2048
+
2049
+ model_outputs = self.model(
2050
+ input_ids,
2051
+ past_key_values=past_key_values,
2052
+ attention_mask=attention_mask,
2053
+ inputs_embeds=inputs_embeds,
2054
+ pixel_values=pixel_values,
2055
+ image_sizes=image_sizes,
2056
+ use_cache=use_cache,
2057
+ output_attentions=output_attentions,
2058
+ output_hidden_states=output_hidden_states,
2059
+ return_dict=return_dict,
2060
+ )
2061
+
2062
+ hidden_states = model_outputs[0]
2063
+ hidden_states = self.dropout(hidden_states)
2064
+ logits = self.classifier(hidden_states)
2065
+
2066
+ loss = None
2067
+ if labels is not None:
2068
+ # move labels to correct device to enable model parallelism
2069
+ labels = labels.to(logits.device)
2070
+ batch_size, seq_length = labels.shape
2071
+ loss_fct = CrossEntropyLoss()
2072
+ loss = loss_fct(
2073
+ logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length)
2074
+ )
2075
+
2076
+ if not return_dict:
2077
+ output = (logits,) + model_outputs[2:]
2078
+ return ((loss,) + output) if loss is not None else output
2079
+
2080
+ return TokenClassifierOutput(
2081
+ loss=loss,
2082
+ logits=logits,
2083
+ hidden_states=model_outputs.hidden_states,
2084
+ attentions=model_outputs.attentions,
2085
+ )