--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-multilingual-cased tags: - generated_from_trainer metrics: - accuracy - precision - recall model-index: - name: bert-base-multilingual-cased-orm results: [] --- # bert-base-multilingual-cased-orm This model is a fine-tuned version of [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1292 - Accuracy: 0.8416 - F1 Binary: 0.5498 - Precision: 0.4515 - Recall: 0.7030 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 64 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 51 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Binary | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:---------:|:------:| | No log | 1.0 | 259 | 0.1653 | 0.7433 | 0.4089 | 0.2993 | 0.6450 | | 0.1075 | 2.0 | 518 | 0.1231 | 0.7939 | 0.4728 | 0.3649 | 0.6714 | | 0.1075 | 3.0 | 777 | 0.1391 | 0.8638 | 0.5556 | 0.5043 | 0.6186 | | 0.0496 | 4.0 | 1036 | 0.1292 | 0.8416 | 0.5498 | 0.4515 | 0.7030 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0