minpeter commited on
Commit
555df65
·
verified ·
1 Parent(s): e1189c0

diff for compatibility

Browse files
Files changed (2) hide show
  1. README.md +12 -135
  2. tokenizer_config.json +2 -1
README.md CHANGED
@@ -10,146 +10,23 @@ tags:
10
  - vision
11
  - image-text-to-text
12
  ---
13
- # LLaVA Model Card
14
 
15
- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/62441d1d9fdefb55a0b7d12c/FPshq08TKYD0e-qwPLDVO.png)
 
 
 
 
16
 
17
- Below is the model card of Llava model 7b, which is copied from the original Llava model card that you can find [here](https://huggingface.co/liuhaotian/llava-v1.5-13b).
18
 
19
- Check out also the Google Colab demo to run Llava on a free-tier Google Colab instance: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1qsl6cd2c8gGtEW1xV5io7S8NHh-Cp1TV?usp=sharing)
20
 
21
- Or check out our Spaces demo! [![Open in Spaces](https://huggingface.co/datasets/huggingface/badges/resolve/main/open-in-hf-spaces-md-dark.svg)](https://huggingface.co/spaces/llava-hf/llava-4bit)
 
22
 
 
23
 
24
- ## Model details
25
-
26
- **Model type:**
27
- LLaVA is an open-source chatbot trained by fine-tuning LLaMA/Vicuna on GPT-generated multimodal instruction-following data.
28
- It is an auto-regressive language model, based on the transformer architecture.
29
-
30
- **Model date:**
31
- LLaVA-v1.5-7B was trained in September 2023.
32
-
33
- **Paper or resources for more information:**
34
- https://llava-vl.github.io/
35
-
36
- ## How to use the model
37
-
38
- First, make sure to have `transformers >= 4.35.3`.
39
- The model supports multi-image and multi-prompt generation. Meaning that you can pass multiple images in your prompt. Make sure also to follow the correct prompt template (`USER: xxx\nASSISTANT:`) and add the token `<image>` to the location where you want to query images:
40
-
41
- ### Using `pipeline`:
42
-
43
- Below we used [`"llava-hf/llava-1.5-7b-hf"`](https://huggingface.co/llava-hf/llava-1.5-7b-hf) checkpoint.
44
-
45
- ```python
46
- from transformers import pipeline
47
-
48
- pipe = pipeline("image-text-to-text", model="llava-hf/llava-1.5-7b-hf")
49
- messages = [
50
- {
51
- "role": "user",
52
- "content": [
53
- {"type": "image", "url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"},
54
- {"type": "text", "text": "What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud"},
55
- ],
56
- },
57
- ]
58
-
59
- out = pipe(text=messages, max_new_tokens=20)
60
- print(out)
61
- >>> [{'input_text': [{'role': 'user', 'content': [{'type': 'image', 'url': 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg'}, {'type': 'text', 'text': 'What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud'}]}], 'generated_text': 'Lava'}]
62
- ```
63
-
64
- ### Using pure `transformers`:
65
-
66
- Below is an example script to run generation in `float16` precision on a GPU device:
67
-
68
- ```python
69
- import requests
70
- from PIL import Image
71
-
72
- import torch
73
- from transformers import AutoProcessor, LlavaForConditionalGeneration
74
-
75
- model_id = "llava-hf/llava-1.5-7b-hf"
76
- model = LlavaForConditionalGeneration.from_pretrained(
77
- model_id,
78
- torch_dtype=torch.float16,
79
- low_cpu_mem_usage=True,
80
- ).to(0)
81
-
82
- processor = AutoProcessor.from_pretrained(model_id)
83
-
84
- # Define a chat history and use `apply_chat_template` to get correctly formatted prompt
85
- # Each value in "content" has to be a list of dicts with types ("text", "image")
86
- conversation = [
87
- {
88
-
89
- "role": "user",
90
- "content": [
91
- {"type": "text", "text": "What are these?"},
92
- {"type": "image"},
93
- ],
94
- },
95
- ]
96
- prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
97
-
98
- image_file = "http://images.cocodataset.org/val2017/000000039769.jpg"
99
- raw_image = Image.open(requests.get(image_file, stream=True).raw)
100
- inputs = processor(images=raw_image, text=prompt, return_tensors='pt').to(0, torch.float16)
101
-
102
- output = model.generate(**inputs, max_new_tokens=200, do_sample=False)
103
- print(processor.decode(output[0][2:], skip_special_tokens=True))
104
- ```
105
-
106
- -----------
107
- From transformers>=v4.48, you can also pass image url or local path to the conversation history, and let the chat template handle the rest.
108
- Chat template will load the image for you and return inputs in `torch.Tensor` which you can pass directly to `model.generate()`
109
-
110
- ```python
111
- messages = [
112
- {
113
- "role": "user",
114
- "content": [
115
- {"type": "image", "url": "https://www.ilankelman.org/stopsigns/australia.jpg"}
116
- {"type": "text", "text": "What is shown in this image?"},
117
- ],
118
- },
119
- ]
120
-
121
- inputs = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors"pt")
122
- output = model.generate(**inputs, max_new_tokens=50)
123
- ```
124
-
125
- ### Model optimization
126
-
127
- #### 4-bit quantization through `bitsandbytes` library
128
-
129
- First make sure to install `bitsandbytes`, `pip install bitsandbytes` and make sure to have access to a CUDA compatible GPU device. Simply change the snippet above with:
130
-
131
- ```diff
132
- model = LlavaForConditionalGeneration.from_pretrained(
133
- model_id,
134
- torch_dtype=torch.float16,
135
- low_cpu_mem_usage=True,
136
- + load_in_4bit=True
137
- )
138
- ```
139
-
140
- #### Use Flash-Attention 2 to further speed-up generation
141
-
142
- First make sure to install `flash-attn`. Refer to the [original repository of Flash Attention](https://github.com/Dao-AILab/flash-attention) regarding that package installation. Simply change the snippet above with:
143
-
144
- ```diff
145
- model = LlavaForConditionalGeneration.from_pretrained(
146
- model_id,
147
- torch_dtype=torch.float16,
148
- low_cpu_mem_usage=True,
149
- + use_flash_attention_2=True
150
- ).to(0)
151
- ```
152
 
153
  ## License
154
- Llama 2 is licensed under the LLAMA 2 Community License,
155
- Copyright (c) Meta Platforms, Inc. All Rights Reserved.
 
10
  - vision
11
  - image-text-to-text
12
  ---
 
13
 
14
+ <!-- header start -->
15
+ <p align="center">
16
+ <img src="https://huggingface.co/datasets/FriendliAI/documentation-images/resolve/main/model-card-assets/friendliai.png" width="100%" alt="FriendliAI Logo">
17
+ </p>
18
+ <!-- header end -->
19
 
 
20
 
21
+ # llava-hf/llava-1.5-7b-hf
22
 
23
+ * Model creator: [llava-hf](https://huggingface.co/llava-hf)
24
+ * Original model: [llava-1.5-7b-hf](https://huggingface.co/llava-hf/llava-1.5-7b-hf)
25
 
26
+ ## Differences
27
 
28
+ * Added missing chat template to tokenizer_config.json
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
 
30
  ## License
31
+
32
+ Refer to the license of the original model card.
tokenizer_config.json CHANGED
@@ -45,6 +45,7 @@
45
  }
46
  },
47
  "bos_token": "<s>",
 
48
  "clean_up_tokenization_spaces": false,
49
  "eos_token": "</s>",
50
  "extra_special_tokens": {
@@ -61,4 +62,4 @@
61
  "trust_remote_code": false,
62
  "unk_token": "<unk>",
63
  "use_default_system_prompt": false
64
- }
 
45
  }
46
  },
47
  "bos_token": "<s>",
48
+ "chat_template": "{% for message in messages %}{% if message['role'] != 'system' %}{{ message['role'].upper() + ': '}}{% endif %}{# Render all images first #}{% for content in message['content'] | selectattr('type', 'equalto', 'image') %}{{ '<image>\n' }}{% endfor %}{# Render all text next #}{% if message['role'] != 'assistant' %}{% for content in message['content'] | selectattr('type', 'equalto', 'text') %}{{ content['text'] + ' '}}{% endfor %}{% else %}{% for content in message['content'] | selectattr('type', 'equalto', 'text') %}{% generation %}{{ content['text'] + ' '}}{% endgeneration %}{% endfor %}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ 'ASSISTANT:' }}{% endif %}",
49
  "clean_up_tokenization_spaces": false,
50
  "eos_token": "</s>",
51
  "extra_special_tokens": {
 
62
  "trust_remote_code": false,
63
  "unk_token": "<unk>",
64
  "use_default_system_prompt": false
65
+ }