diff for compatibility
Browse files- README.md +12 -135
- tokenizer_config.json +2 -1
README.md
CHANGED
@@ -10,146 +10,23 @@ tags:
|
|
10 |
- vision
|
11 |
- image-text-to-text
|
12 |
---
|
13 |
-
# LLaVA Model Card
|
14 |
|
15 |
-
|
|
|
|
|
|
|
|
|
16 |
|
17 |
-
Below is the model card of Llava model 7b, which is copied from the original Llava model card that you can find [here](https://huggingface.co/liuhaotian/llava-v1.5-13b).
|
18 |
|
19 |
-
|
20 |
|
21 |
-
|
|
|
22 |
|
|
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
**Model type:**
|
27 |
-
LLaVA is an open-source chatbot trained by fine-tuning LLaMA/Vicuna on GPT-generated multimodal instruction-following data.
|
28 |
-
It is an auto-regressive language model, based on the transformer architecture.
|
29 |
-
|
30 |
-
**Model date:**
|
31 |
-
LLaVA-v1.5-7B was trained in September 2023.
|
32 |
-
|
33 |
-
**Paper or resources for more information:**
|
34 |
-
https://llava-vl.github.io/
|
35 |
-
|
36 |
-
## How to use the model
|
37 |
-
|
38 |
-
First, make sure to have `transformers >= 4.35.3`.
|
39 |
-
The model supports multi-image and multi-prompt generation. Meaning that you can pass multiple images in your prompt. Make sure also to follow the correct prompt template (`USER: xxx\nASSISTANT:`) and add the token `<image>` to the location where you want to query images:
|
40 |
-
|
41 |
-
### Using `pipeline`:
|
42 |
-
|
43 |
-
Below we used [`"llava-hf/llava-1.5-7b-hf"`](https://huggingface.co/llava-hf/llava-1.5-7b-hf) checkpoint.
|
44 |
-
|
45 |
-
```python
|
46 |
-
from transformers import pipeline
|
47 |
-
|
48 |
-
pipe = pipeline("image-text-to-text", model="llava-hf/llava-1.5-7b-hf")
|
49 |
-
messages = [
|
50 |
-
{
|
51 |
-
"role": "user",
|
52 |
-
"content": [
|
53 |
-
{"type": "image", "url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"},
|
54 |
-
{"type": "text", "text": "What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud"},
|
55 |
-
],
|
56 |
-
},
|
57 |
-
]
|
58 |
-
|
59 |
-
out = pipe(text=messages, max_new_tokens=20)
|
60 |
-
print(out)
|
61 |
-
>>> [{'input_text': [{'role': 'user', 'content': [{'type': 'image', 'url': 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg'}, {'type': 'text', 'text': 'What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud'}]}], 'generated_text': 'Lava'}]
|
62 |
-
```
|
63 |
-
|
64 |
-
### Using pure `transformers`:
|
65 |
-
|
66 |
-
Below is an example script to run generation in `float16` precision on a GPU device:
|
67 |
-
|
68 |
-
```python
|
69 |
-
import requests
|
70 |
-
from PIL import Image
|
71 |
-
|
72 |
-
import torch
|
73 |
-
from transformers import AutoProcessor, LlavaForConditionalGeneration
|
74 |
-
|
75 |
-
model_id = "llava-hf/llava-1.5-7b-hf"
|
76 |
-
model = LlavaForConditionalGeneration.from_pretrained(
|
77 |
-
model_id,
|
78 |
-
torch_dtype=torch.float16,
|
79 |
-
low_cpu_mem_usage=True,
|
80 |
-
).to(0)
|
81 |
-
|
82 |
-
processor = AutoProcessor.from_pretrained(model_id)
|
83 |
-
|
84 |
-
# Define a chat history and use `apply_chat_template` to get correctly formatted prompt
|
85 |
-
# Each value in "content" has to be a list of dicts with types ("text", "image")
|
86 |
-
conversation = [
|
87 |
-
{
|
88 |
-
|
89 |
-
"role": "user",
|
90 |
-
"content": [
|
91 |
-
{"type": "text", "text": "What are these?"},
|
92 |
-
{"type": "image"},
|
93 |
-
],
|
94 |
-
},
|
95 |
-
]
|
96 |
-
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
|
97 |
-
|
98 |
-
image_file = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
99 |
-
raw_image = Image.open(requests.get(image_file, stream=True).raw)
|
100 |
-
inputs = processor(images=raw_image, text=prompt, return_tensors='pt').to(0, torch.float16)
|
101 |
-
|
102 |
-
output = model.generate(**inputs, max_new_tokens=200, do_sample=False)
|
103 |
-
print(processor.decode(output[0][2:], skip_special_tokens=True))
|
104 |
-
```
|
105 |
-
|
106 |
-
-----------
|
107 |
-
From transformers>=v4.48, you can also pass image url or local path to the conversation history, and let the chat template handle the rest.
|
108 |
-
Chat template will load the image for you and return inputs in `torch.Tensor` which you can pass directly to `model.generate()`
|
109 |
-
|
110 |
-
```python
|
111 |
-
messages = [
|
112 |
-
{
|
113 |
-
"role": "user",
|
114 |
-
"content": [
|
115 |
-
{"type": "image", "url": "https://www.ilankelman.org/stopsigns/australia.jpg"}
|
116 |
-
{"type": "text", "text": "What is shown in this image?"},
|
117 |
-
],
|
118 |
-
},
|
119 |
-
]
|
120 |
-
|
121 |
-
inputs = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors"pt")
|
122 |
-
output = model.generate(**inputs, max_new_tokens=50)
|
123 |
-
```
|
124 |
-
|
125 |
-
### Model optimization
|
126 |
-
|
127 |
-
#### 4-bit quantization through `bitsandbytes` library
|
128 |
-
|
129 |
-
First make sure to install `bitsandbytes`, `pip install bitsandbytes` and make sure to have access to a CUDA compatible GPU device. Simply change the snippet above with:
|
130 |
-
|
131 |
-
```diff
|
132 |
-
model = LlavaForConditionalGeneration.from_pretrained(
|
133 |
-
model_id,
|
134 |
-
torch_dtype=torch.float16,
|
135 |
-
low_cpu_mem_usage=True,
|
136 |
-
+ load_in_4bit=True
|
137 |
-
)
|
138 |
-
```
|
139 |
-
|
140 |
-
#### Use Flash-Attention 2 to further speed-up generation
|
141 |
-
|
142 |
-
First make sure to install `flash-attn`. Refer to the [original repository of Flash Attention](https://github.com/Dao-AILab/flash-attention) regarding that package installation. Simply change the snippet above with:
|
143 |
-
|
144 |
-
```diff
|
145 |
-
model = LlavaForConditionalGeneration.from_pretrained(
|
146 |
-
model_id,
|
147 |
-
torch_dtype=torch.float16,
|
148 |
-
low_cpu_mem_usage=True,
|
149 |
-
+ use_flash_attention_2=True
|
150 |
-
).to(0)
|
151 |
-
```
|
152 |
|
153 |
## License
|
154 |
-
|
155 |
-
|
|
|
10 |
- vision
|
11 |
- image-text-to-text
|
12 |
---
|
|
|
13 |
|
14 |
+
<!-- header start -->
|
15 |
+
<p align="center">
|
16 |
+
<img src="https://huggingface.co/datasets/FriendliAI/documentation-images/resolve/main/model-card-assets/friendliai.png" width="100%" alt="FriendliAI Logo">
|
17 |
+
</p>
|
18 |
+
<!-- header end -->
|
19 |
|
|
|
20 |
|
21 |
+
# llava-hf/llava-1.5-7b-hf
|
22 |
|
23 |
+
* Model creator: [llava-hf](https://huggingface.co/llava-hf)
|
24 |
+
* Original model: [llava-1.5-7b-hf](https://huggingface.co/llava-hf/llava-1.5-7b-hf)
|
25 |
|
26 |
+
## Differences
|
27 |
|
28 |
+
* Added missing chat template to tokenizer_config.json
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
## License
|
31 |
+
|
32 |
+
Refer to the license of the original model card.
|
tokenizer_config.json
CHANGED
@@ -45,6 +45,7 @@
|
|
45 |
}
|
46 |
},
|
47 |
"bos_token": "<s>",
|
|
|
48 |
"clean_up_tokenization_spaces": false,
|
49 |
"eos_token": "</s>",
|
50 |
"extra_special_tokens": {
|
@@ -61,4 +62,4 @@
|
|
61 |
"trust_remote_code": false,
|
62 |
"unk_token": "<unk>",
|
63 |
"use_default_system_prompt": false
|
64 |
-
}
|
|
|
45 |
}
|
46 |
},
|
47 |
"bos_token": "<s>",
|
48 |
+
"chat_template": "{% for message in messages %}{% if message['role'] != 'system' %}{{ message['role'].upper() + ': '}}{% endif %}{# Render all images first #}{% for content in message['content'] | selectattr('type', 'equalto', 'image') %}{{ '<image>\n' }}{% endfor %}{# Render all text next #}{% if message['role'] != 'assistant' %}{% for content in message['content'] | selectattr('type', 'equalto', 'text') %}{{ content['text'] + ' '}}{% endfor %}{% else %}{% for content in message['content'] | selectattr('type', 'equalto', 'text') %}{% generation %}{{ content['text'] + ' '}}{% endgeneration %}{% endfor %}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ 'ASSISTANT:' }}{% endif %}",
|
49 |
"clean_up_tokenization_spaces": false,
|
50 |
"eos_token": "</s>",
|
51 |
"extra_special_tokens": {
|
|
|
62 |
"trust_remote_code": false,
|
63 |
"unk_token": "<unk>",
|
64 |
"use_default_system_prompt": false
|
65 |
+
}
|