Xidong commited on
Commit
af06363
·
verified ·
1 Parent(s): 8b53c03

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +122 -3
README.md CHANGED
@@ -1,3 +1,122 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+ # TinyDeepSeek: Reproduction of DeepSeek-R1 and Beyond
5
+
6
+ <p align="center">
7
+ 📃 <a href="" target="_blank">Paper</a> • 🤗 <a href="https://huggingface.co/FreedomIntelligence/TinyDeepSeek-0.5B-base" target="_blank">TinyDeepSeek-0.5B-base</a> • 🤗 <a href="https://huggingface.co/FreedomIntelligence/TinyDeepSeek-3.3B-base" target="_blank">TinyDeepSeek-3.3B-base</a>
8
+ <br> 🤗 <a href="https://huggingface.co/FreedomIntelligence/TinyDeepSeek-3.3B-checkpoints" target="_blank"> TinyDeepSeek-3.3B-checkpoints</a> • 🤗 <a href="https://huggingface.co/FreedomIntelligence/TinyDeepSeek-0.5B-checkpoints" target="_blank">TinyDeepSeek-0.5B-checkpoints</a>
9
+
10
+ </p>
11
+
12
+ **Innovation and Open source are the best tributes and reproductions of DeepSeek**.
13
+
14
+ The open-source ethos, rooted in technological equity, upholds two key principles: **free access for all developers** and **the opportunity for technical contributions**. While DeepSeek exemplifies the first principle, the second principle is hindered by restrictive training strategies, unclear data sources, and the high costs of model training. These constraints limit the open-source community's capacity to contribute and impede technological progress.
15
+
16
+ To overcome these challenges, we launched a comprehensive reproduction project of DeepSeek. This initiative involves training models from scratch, replicating DeepSeek's architecture and algorithms. We will **fully open-source** the training code, datasets, and models, offering code framework, reference solution, and base models for low-cost continual exploration.
17
+
18
+
19
+
20
+ ## 🌈 Update
21
+
22
+ * **[2025.03.11]** TinyDeepSeek repo is published!🎉
23
+
24
+
25
+
26
+
27
+ ## Reproduction of DeepSeek-R1
28
+
29
+ ### Architecture
30
+
31
+ <details><summary>Click to expand</summary>
32
+
33
+ ![arch](assets/arch.png)
34
+
35
+ As shown in above Figure, the DeepSeek technical report introduces three architectural designs:
36
+
37
+ - A. *Multi-Head Latent Attention (MLA)*
38
+
39
+ - B. *Load Balancing Strategy without Auxiliary Loss*: Please refer [code](https://github.com/FreedomIntelligence/TinyDeepSeek/blob/main/src/modeling/tinydeepseek/modeling_tinydeepseek.py#L550) for implementation.
40
+
41
+ - C. *Multi-Token Prediction*: Please refer [code](https://github.com/FreedomIntelligence/TinyDeepSeek/blob/main/src/modeling/tinydeepseek/modeling_tinydeepseek.py#L1875) for implementation.
42
+
43
+ Our Detailed architectural parameter are shown in Table below.
44
+
45
+ ![arch](assets/iarch.png)
46
+
47
+ </details>
48
+
49
+ ### Data Construction
50
+
51
+ <details><summary>Click to expand</summary>
52
+
53
+ ![arch](assets/data.png)
54
+
55
+ - Pretrain:
56
+ - Meta & Labeled Data: *TBD*
57
+ - Process Code: Please refer to [Link](/pretrain_data/Readme.md) for implementation.
58
+ - SFT:
59
+ - [HuggingFaceTB/smoltalk](https://huggingface.co/datasets/HuggingFaceTB/smoltalk)
60
+ - [allenai/tulu-3-sft-olmo-2-mixture](https://huggingface.co/datasets/allenai/tulu-3-sft-olmo-2-mixture)
61
+ - RL:
62
+ - [SynthLabsAI/Big-Math-RL-Verified](https://huggingface.co/datasets/SynthLabsAI/Big-Math-RL-Verified)
63
+
64
+ </details>
65
+
66
+ ### Model Training
67
+
68
+ ```
69
+ bash examples/pretrainStage1.sh
70
+ bash examples/pretrainStage2.sh
71
+ bash examples/sft.sh
72
+
73
+ bash examples/rl.sh (TBD)
74
+ ```
75
+
76
+ ### Results
77
+
78
+ *TBD*
79
+
80
+ ## Beyond Reproduction
81
+
82
+ ### Scale Up RL to Pretrain
83
+
84
+ > **RWO: Reward Weighted Optimization**
85
+
86
+ For the training, please include the include the following flags in the training command.
87
+
88
+ - For Pretrain please prepare data item with key 'text_evaluation':{"knowledge":4, "reasoning":3, ...}.
89
+ - For SFT, please provide data file 'General.json' and reward file 'General_reward.json' in the same directory.
90
+
91
+ ```
92
+ --reward_weighted_optimization True \
93
+ --remove_unused_columns False \
94
+ ```
95
+
96
+ ## 📃 To do
97
+
98
+ - [ ] Release Evaluation Results
99
+ - [ ] Release RL Training Code and Model
100
+ - [ ] Release Pretrain Data quality annotation label
101
+ - [ ] Release TinyDeepSeek Technical Report
102
+
103
+
104
+ ## Acknowledgment
105
+
106
+ - [DeepSeek-R1](https://github.com/deepseek-ai/DeepSeek-R1)
107
+
108
+
109
+ ## Citation
110
+ Please use the following citation if you intend to use our dataset for training or evaluation:
111
+
112
+ ```
113
+ @misc{tinydeepseek,
114
+ title={TinyDeepSeek},
115
+ author={FreedomIntelligence Team},
116
+ year = {2025},
117
+ publisher = {GitHub},
118
+ journal = {GitHub repository},
119
+ howpublished = {\url{https://github.com/FreedomIntelligence/TinyDeepSeek}},
120
+ }
121
+ ```
122
+