File size: 2,242 Bytes
a652f10 2945f46 a652f10 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
---
license: mit
library_name: transformers
pipeline_tag: image-text-to-text
---

<p align="center">
📃 <a href="https://arxiv.org/abs/2409.02889" target="_blank">Paper</a> • 🌐 <a href="" target="_blank">Demo</a> • 📃 <a href="https://github.com/FreedomIntelligence/LongLLaVA" target="_blank">Github</a> • 🤗 <a href="https://huggingface.co/FreedomIntelligence/LongLLaVA-53B-A13B" target="_blank">LongLLaVA-53B-A13B</a>
</p>

## 🌈 Update
* **[2024.09.05]** LongLLaVA repo is published!🎉 The Code will
## Architecture
<details>
<summary>Click to view the architecture image</summary>

</details>
## Results
<details>
<summary>Click to view the Results</summary>
- Main Results

- Diagnostic Results

- Video-NIAH

</details>
## Results reproduction
### Evaluation
- Preparation
Get the model inference code from [Github](https://github.com/FreedomIntelligence/LongLLaVA).
```bash
git clone https://github.com/FreedomIntelligence/LongLLaVA.git
```
- Environment Setup
```bash
pip install -r requirements.txt
```
- Command Line Interface
```bash
python cli.py --model_dir path-to-longllava
```
- Model Inference
```python
query = 'What does the picture show?'
image_paths = ['image_path1'] # image or video path
from cli import Chatbot
bot = Chatbot(path-to-longllava)
output = bot.chat(query, image_paths)
print(output) # Prints the output of the model
```
## Acknowledgement
- [LLaVA](https://github.com/haotian-liu/LLaVA): Visual Instruction Tuning (LLaVA) built towards GPT-4V level capabilities and beyond.
## Citation
```
@misc{wang2024longllavascalingmultimodalllms,
title={LongLLaVA: Scaling Multi-modal LLMs to 1000 Images Efficiently via Hybrid Architecture},
author={Xidong Wang and Dingjie Song and Shunian Chen and Chen Zhang and Benyou Wang},
year={2024},
eprint={2409.02889},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2409.02889},
}
```
|