Improve model card (#1)
Browse files- Improve model card (fe59873f86a5043ddd41d3d626c29a69bb1c7ee7)
Co-authored-by: Niels Rogge <[email protected]>
README.md
CHANGED
|
@@ -1,3 +1,134 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: apache-2.0
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
pipeline_tag: feature-extraction
|
| 4 |
+
---
|
| 5 |
+
|
| 6 |
+
# UniTok: A Unified Tokenizer for Visual Generation and Understanding
|
| 7 |
+
|
| 8 |
+
This repository contains UniTok, a unified visual tokenizer for both image generation and understanding tasks, as presented in [UniTok: A Unified Tokenizer for Visual Generation and Understanding](https://hf.co/papers/2502.20321).
|
| 9 |
+
|
| 10 |
+
Project Page: https://foundationvision.github.io/UniTok/
|
| 11 |
+
|
| 12 |
+
Code: https://github.com/FoundationVision/UniTok
|
| 13 |
+
|
| 14 |
+

|
| 15 |
+
|
| 16 |
+
UniTok encodes fine-grained details for generation and captures high-level semantics for understanding. It's compatible with autoregressive generative models (e.g., LlamaGen), multimodal understanding models (e.g., LLaVA), and unified MLLMs (e.g., Chameleon and Liquid).
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
Built upon UniTok, we construct an MLLM capable of both multimodal generation and understanding, which sets a new state-of-the-art among unified autoregressive MLLMs. The weights of our MLLM will be released soon.
|
| 20 |
+
|
| 21 |
+

|
| 22 |
+
|
| 23 |
+
## Performance
|
| 24 |
+
|
| 25 |
+
<table>
|
| 26 |
+
<thead>
|
| 27 |
+
<tr>
|
| 28 |
+
<th>Method</th>
|
| 29 |
+
<th>#Tokens</th>
|
| 30 |
+
<th>rFID ↓</th>
|
| 31 |
+
<th>Accuracy</th>
|
| 32 |
+
</tr>
|
| 33 |
+
</thead>
|
| 34 |
+
<tbody>
|
| 35 |
+
<tr>
|
| 36 |
+
<td colspan="4"><i>VQVAE Model</i></td>
|
| 37 |
+
</tr>
|
| 38 |
+
<tr align="center">
|
| 39 |
+
<td>VQ-GAN</td>
|
| 40 |
+
<td>256</td>
|
| 41 |
+
<td>4.98</td>
|
| 42 |
+
<td>--</td>
|
| 43 |
+
</tr>
|
| 44 |
+
<tr align="center">
|
| 45 |
+
<td>RQ-VAE</td>
|
| 46 |
+
<td>256</td>
|
| 47 |
+
<td>1.30</td>
|
| 48 |
+
<td>--</td>
|
| 49 |
+
</tr>
|
| 50 |
+
<tr align="center">
|
| 51 |
+
<td>VAR</td>
|
| 52 |
+
<td>680</td>
|
| 53 |
+
<td>0.90</td>
|
| 54 |
+
<td>--</td>
|
| 55 |
+
</tr>
|
| 56 |
+
<tr>
|
| 57 |
+
<td colspan="4"><i>CLIP Model</i></td>
|
| 58 |
+
</tr>
|
| 59 |
+
<tr align="center">
|
| 60 |
+
<td>CLIP</td>
|
| 61 |
+
<td>256</td>
|
| 62 |
+
<td>--</td>
|
| 63 |
+
<td>76.2</td>
|
| 64 |
+
</tr>
|
| 65 |
+
<tr align="center">
|
| 66 |
+
<td>SigLIP</td>
|
| 67 |
+
<td>256</td>
|
| 68 |
+
<td>--</td>
|
| 69 |
+
<td>80.5</td>
|
| 70 |
+
</tr>
|
| 71 |
+
<tr align="center">
|
| 72 |
+
<td>ViTamin</td>
|
| 73 |
+
<td>256</td>
|
| 74 |
+
<td>--</td>
|
| 75 |
+
<td>81.2</td>
|
| 76 |
+
</tr>
|
| 77 |
+
<tr>
|
| 78 |
+
<td colspan="4"><i>Unified Model</i></td>
|
| 79 |
+
</tr>
|
| 80 |
+
<tr align="center">
|
| 81 |
+
<td>TokenFlow †</td>
|
| 82 |
+
<td>680</td>
|
| 83 |
+
<td>1.37</td>
|
| 84 |
+
<td>--</td>
|
| 85 |
+
</tr>
|
| 86 |
+
<tr align="center">
|
| 87 |
+
<td>VILA-U †</td>
|
| 88 |
+
<td>256</td>
|
| 89 |
+
<td>1.80</td>
|
| 90 |
+
<td>73.3</td>
|
| 91 |
+
</tr>
|
| 92 |
+
<tr align="center">
|
| 93 |
+
<td>UniTok</td>
|
| 94 |
+
<td>256</td>
|
| 95 |
+
<td>0.39</td>
|
| 96 |
+
<td>70.5</td>
|
| 97 |
+
</tr>
|
| 98 |
+
<tr align="center">
|
| 99 |
+
<td>UniTok †</td>
|
| 100 |
+
<td>256</td>
|
| 101 |
+
<td>0.38</td>
|
| 102 |
+
<td>78.6</td>
|
| 103 |
+
</tr>
|
| 104 |
+
</tbody>
|
| 105 |
+
</table>
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
† indicates the model uses pretrained CLIP weights for initialization. Although CLIP weight initialization boosts ImageNet zero-shot accuracy,
|
| 109 |
+
we notice that random initialization leads to better downstream understanding performance.
|
| 110 |
+
We thus release the model checkpoint of UniTok that is trained from scratch.
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
## Model Weights
|
| 115 |
+
|
| 116 |
+
| Model | Res. | #Token | Code Shape | rFID | Checkpoint |
|
| 117 |
+
|:------------:|:----:|:------:|:-------------------------:|:----:|:------------:|
|
| 118 |
+
| UniTok-Large | 256 | 256 | 16 $\times$ 16 $\times$ 8 | 0.39 | [Download](https://huggingface.co/FoundationVision/UniTok/blob/main/unitok_tokenizer.pth) |
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
## Usage
|
| 122 |
+
|
| 123 |
+
(... rest of README content ...)
|
| 124 |
+
|
| 125 |
+
## Citation
|
| 126 |
+
|
| 127 |
+
```bibtex
|
| 128 |
+
@article{unitok,
|
| 129 |
+
title={UniTok: A Unified Tokenizer for Visual Generation and Understanding},
|
| 130 |
+
author={Ma, Chuofan and Jiang, Yi and Wu, Junfeng and Yang, Jihan and Yu, Xin and Yuan, Zehuan and Peng, Bingyue and Qi, Xiaojuan},
|
| 131 |
+
journal={arXiv preprint arXiv:2502.20321},
|
| 132 |
+
year={2025}
|
| 133 |
+
}
|
| 134 |
+
```
|