Create train_unsloth_7b.py
Browse files- train_unsloth_7b.py +122 -0
train_unsloth_7b.py
ADDED
|
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from unsloth import FastLlamaModel
|
| 2 |
+
import torch
|
| 3 |
+
from trl import SFTTrainer, DataCollatorForCompletionOnlyLM
|
| 4 |
+
from transformers import TrainingArguments
|
| 5 |
+
from datasets import load_from_disk
|
| 6 |
+
import math
|
| 7 |
+
import wandb
|
| 8 |
+
import os
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
max_seq_length = 2048 # Can change to whatever number <= 4096
|
| 12 |
+
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
|
| 13 |
+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
revisions = [("250k", "8ee454fe392a0267c3dee21323b5cac233d67441"),
|
| 17 |
+
("500k", "12d3eec2d02533226c9cff719d4278967574ffcd"), ("750k", "845b8c6d8499c0e8fea0b8e5480d72e700385820"), ("1000k", "53669200ad7a6a6f1ac6a73e54c9e54c1d834a17")]
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
#for revision in revisions:
|
| 22 |
+
model, tokenizer = FastLlamaModel.from_pretrained(
|
| 23 |
+
model_name = "Finnish-NLP/llama-7b-finnish",
|
| 24 |
+
max_seq_length = max_seq_length,
|
| 25 |
+
dtype = dtype,
|
| 26 |
+
load_in_4bit = load_in_4bit,
|
| 27 |
+
revision='53669200ad7a6a6f1ac6a73e54c9e54c1d834a17'
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
tokenizer.clean_up_tokenization_spaces=True
|
| 31 |
+
tokenizer.add_tokens(["<|alku|>", "<PAD>", "<|ihminen|>", "<|avustaja|>"])
|
| 32 |
+
tokenizer.pad_token = "<PAD>"
|
| 33 |
+
tokenizer.add_special_tokens({'eos_token': '<|loppu|>'})
|
| 34 |
+
tokenizer.add_tokens('\n', special_tokens=True)
|
| 35 |
+
tokenizer.add_eos_token=True
|
| 36 |
+
model.resize_token_embeddings(new_num_tokens=len(tokenizer))
|
| 37 |
+
model.config.eos_token_id = tokenizer.eos_token_id
|
| 38 |
+
print(model.config.eos_token_id)
|
| 39 |
+
assert tokenizer.pad_token_id != tokenizer.eos_token_id
|
| 40 |
+
print(tokenizer.padding_side)
|
| 41 |
+
print(tokenizer.add_bos_token)
|
| 42 |
+
print(model)
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
model = FastLlamaModel.get_peft_model(
|
| 47 |
+
model,
|
| 48 |
+
r = 32,
|
| 49 |
+
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
|
| 50 |
+
"gate_proj", "up_proj", "down_proj"],
|
| 51 |
+
lora_alpha = 32,
|
| 52 |
+
lora_dropout = 0
|
| 53 |
+
bias = "none"
|
| 54 |
+
use_gradient_checkpointing = True,
|
| 55 |
+
modules_to_save = ["lm_head", "embed_tokens"],
|
| 56 |
+
random_state = 3407,
|
| 57 |
+
max_seq_length = max_seq_length,
|
| 58 |
+
use_rslora=True
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
dataset = load_from_disk("deepl_kaannetyt_combined")
|
| 63 |
+
dataset = dataset.train_test_split(test_size=0.02)
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
bs = 2
|
| 67 |
+
ga = 4
|
| 68 |
+
epochs = 3
|
| 69 |
+
train_steps = math.ceil(len(dataset["train"]) / bs / ga * epochs)
|
| 70 |
+
print(train_steps)
|
| 71 |
+
eval_steps = math.ceil(train_steps/10)
|
| 72 |
+
print(eval_steps)
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
try:
|
| 77 |
+
wandb.finish()
|
| 78 |
+
except Exception as e:
|
| 79 |
+
wandb.init()
|
| 80 |
+
|
| 81 |
+
response_template = "\n<|avustaja|> Vastauksesi:"
|
| 82 |
+
response_template_ids = tokenizer.encode(response_template, add_special_tokens=False)
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
collator = DataCollatorForCompletionOnlyLM(response_template_ids, tokenizer=tokenizer, mlm=False)
|
| 86 |
+
|
| 87 |
+
trainer = SFTTrainer(
|
| 88 |
+
model = model,
|
| 89 |
+
train_dataset = dataset["train"],
|
| 90 |
+
eval_dataset = dataset["test"],
|
| 91 |
+
dataset_text_field = "text",
|
| 92 |
+
data_collator=collator,
|
| 93 |
+
max_seq_length = max_seq_length,
|
| 94 |
+
tokenizer=tokenizer,
|
| 95 |
+
args = TrainingArguments(
|
| 96 |
+
per_device_train_batch_size = 2,
|
| 97 |
+
per_device_eval_batch_size = 2,
|
| 98 |
+
gradient_accumulation_steps = 4,
|
| 99 |
+
warmup_steps = 50,
|
| 100 |
+
max_steps = train_steps,
|
| 101 |
+
report_to="wandb",
|
| 102 |
+
eval_steps=eval_steps,
|
| 103 |
+
evaluation_strategy="steps",
|
| 104 |
+
save_strategy='steps',
|
| 105 |
+
learning_rate = 2e-5,
|
| 106 |
+
fp16 = not torch.cuda.is_bf16_supported(),
|
| 107 |
+
bf16 = torch.cuda.is_bf16_supported(),
|
| 108 |
+
logging_steps = 5,
|
| 109 |
+
optim = "adamw_8bit",
|
| 110 |
+
weight_decay = 0.001,
|
| 111 |
+
lr_scheduler_type = "cosine",
|
| 112 |
+
seed = 3407,
|
| 113 |
+
output_dir = f"llama7b-finniish-instruct-v0.1",
|
| 114 |
+
),
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
wandb.login()
|
| 118 |
+
|
| 119 |
+
trainer.train()
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
|