silashundhausen commited on
Commit
4f2205c
·
verified ·
1 Parent(s): 9e1cc31

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +16 -18
README.md CHANGED
@@ -1,11 +1,11 @@
1
  ---
2
  # Model Card generated based on AutoTrain run
3
- # Date: 2025-04-05 (Please update with actual date)
4
  language:
5
  - en # Primarily English from EDGAR
6
- - multilingual # Corrected special value
7
  library_name: transformers
8
- license: apache-2.0 # Or appropriate license if you choose one
9
  tags:
10
  - text-classification
11
  - financial-filings
@@ -19,7 +19,7 @@ widget:
19
  datasets:
20
  - custom # Combined Labelbox and EDGAR data
21
  model-index:
22
- - name: xlm-roberta-large-fin-filing-classification # Example Name
23
  results:
24
  - task:
25
  type: text-classification
@@ -28,37 +28,36 @@ model-index:
28
  type: custom
29
  name: Combined Financial Filings (Labelbox + EDGAR)
30
  split: validation
31
- # Corrected metrics format (array of objects, removed config object)
32
  metrics:
33
  - type: accuracy
34
  value: 0.9617
35
  name: Accuracy
36
  - type: f1
37
  value: 0.6470
38
- name: F1 (Macro) # Averaging specified in name
39
  - type: f1
40
  value: 0.9597
41
- name: F1 (Weighted) # Averaging specified in name
42
  - type: loss
43
  value: 0.1687
44
  name: Loss
45
  ---
46
 
47
- # Model Card: XLM-RoBERTa-Large Financial Filing Classifier
48
 
49
  ## Model Details
50
 
51
- * **Model Name:** `xlm-roberta-large-fin-filing-classification` (Example - Replace with your chosen Hub repo name)
52
  * **Description:** This model is a fine-tuned version of `FacebookAI/xlm-roberta-large` designed for multi-class text classification of financial filing documents. It classifies input text (expected in markdown format) into one of 37 predefined filing type categories.
53
  * **Base Model:** [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large)
54
- * **Developed by:** [Your Name/Organization - e.g., silashundhausen]
55
- * **Model Version:** 1.0 (Example)
56
  * **Fine-tuning Framework:** Hugging Face AutoTrain
57
 
58
  ## Intended Use
59
 
60
  * **Primary Use:** To automatically classify financial filing documents based on their textual content into one of 37 categories (e.g., Annual Report, Quarterly Report, Directors' Dealings, etc.).
61
- * **Primary Users:** Financial analysts, data providers, regulatory compliance teams, researchers.
62
  * **Out-of-Scope Uses:** This model is not designed for sentiment analysis, named entity recognition, or classification tasks outside the defined 37 financial filing types. Performance on filing types significantly different from those in the training data is not guaranteed.
63
 
64
  ## Training Data
@@ -113,8 +112,8 @@ You can use this model via the Hugging Face `transformers` library:
113
  ```python
114
  from transformers import pipeline
115
 
116
- # Load the classifier pipeline (replace with your actual model repo ID)
117
- model_repo_id = "silashundhausen/filing-classification-xlmr" # Example ID
118
  classifier = pipeline("text-classification", model=model_repo_id)
119
 
120
  # Example usage
@@ -144,12 +143,11 @@ print(predictions)
144
  # results = [{"label": model.config.id2label[i], "score": prob.item()} for i, prob in enumerate(probabilities)]
145
  # results.sort(key=lambda x: x["score"], reverse=True)
146
  # print(results)
147
-
148
- Citation@misc{your_model_citation_tag, # Consider creating one
149
- author = {[Your Name/Organization]},
150
  title = {XLM-RoBERTa-Large Financial Filing Classifier},
151
  year = {2025},
152
  publisher = {Hugging Face},
153
  journal = {Hugging Face Model Hub},
154
- howpublished = {\url{[https://huggingface.co/](https://huggingface.co/)[your-username]/[your-repo-name]}}, # Replace URL
155
  }
 
1
  ---
2
  # Model Card generated based on AutoTrain run
3
+ # Date: 2025-04-07
4
  language:
5
  - en # Primarily English from EDGAR
6
+ - multilingual # Assumed multilingual from European sources & XLM-R base
7
  library_name: transformers
8
+ license: apache-2.0 # Or appropriate license
9
  tags:
10
  - text-classification
11
  - financial-filings
 
19
  datasets:
20
  - custom # Combined Labelbox and EDGAR data
21
  model-index:
22
+ - name: FinancialReports/filing-classification-xlmr # Model Repo ID
23
  results:
24
  - task:
25
  type: text-classification
 
28
  type: custom
29
  name: Combined Financial Filings (Labelbox + EDGAR)
30
  split: validation
 
31
  metrics:
32
  - type: accuracy
33
  value: 0.9617
34
  name: Accuracy
35
  - type: f1
36
  value: 0.6470
37
+ name: F1 (Macro)
38
  - type: f1
39
  value: 0.9597
40
+ name: F1 (Weighted)
41
  - type: loss
42
  value: 0.1687
43
  name: Loss
44
  ---
45
 
46
+ # Model Card: FinancialReports Filing Classifier
47
 
48
  ## Model Details
49
 
50
+ * **Model Name:** `FinancialReports/filing-classification-xlmr` (Assumed Repo ID based on AutoTrain project & org)
51
  * **Description:** This model is a fine-tuned version of `FacebookAI/xlm-roberta-large` designed for multi-class text classification of financial filing documents. It classifies input text (expected in markdown format) into one of 37 predefined filing type categories.
52
  * **Base Model:** [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large)
53
+ * **Developed by:** FinancialReports ([financialreports.eu](https://financialreports.eu))
54
+ * **Model Version:** 1.0
55
  * **Fine-tuning Framework:** Hugging Face AutoTrain
56
 
57
  ## Intended Use
58
 
59
  * **Primary Use:** To automatically classify financial filing documents based on their textual content into one of 37 categories (e.g., Annual Report, Quarterly Report, Directors' Dealings, etc.).
60
+ * **Primary Users:** Financial analysts, data providers, regulatory compliance teams, researchers associated with FinancialReports.
61
  * **Out-of-Scope Uses:** This model is not designed for sentiment analysis, named entity recognition, or classification tasks outside the defined 37 financial filing types. Performance on filing types significantly different from those in the training data is not guaranteed.
62
 
63
  ## Training Data
 
112
  ```python
113
  from transformers import pipeline
114
 
115
+ # Load the classifier pipeline (replace with your actual model repo ID on the Hub)
116
+ model_repo_id = "FinancialReports/filing-classification-xlmr"
117
  classifier = pipeline("text-classification", model=model_repo_id)
118
 
119
  # Example usage
 
143
  # results = [{"label": model.config.id2label[i], "score": prob.item()} for i, prob in enumerate(probabilities)]
144
  # results.sort(key=lambda x: x["score"], reverse=True)
145
  # print(results)
146
+ Citation@misc{financialreports_filing_classifier_2025,
147
+ author = {FinancialReports},
 
148
  title = {XLM-RoBERTa-Large Financial Filing Classifier},
149
  year = {2025},
150
  publisher = {Hugging Face},
151
  journal = {Hugging Face Model Hub},
152
+ howpublished = {\url{[https://huggingface.co/FinancialReports/filing-classification-xlmr](https://www.google.com/search?q=https://huggingface.co/FinancialReports/filing-classification-xlmr)}}, # Assumed URL
153
  }