sqiud commited on
Commit
1277ca1
·
verified ·
1 Parent(s): 7eaf409

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +45 -0
README.md ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Dataset stats: \
2
+ lat_mean = 39.951564548022596 \
3
+ lat_std = 0.0006361722351128644 \
4
+ lon_mean = -75.19150880602636 \
5
+ lon_std = 0.000611411894337979
6
+
7
+ The model can be loaded using:
8
+ ```
9
+ from huggingface_hub import hf_hub_download
10
+ import torch
11
+ # Specify the repository and the filename of the model you want to load
12
+ repo_id = "FinalProj5190/ImageToGPSproject-resnet_vit-base" # Replace with your repo name
13
+ filename = "resnet_vit_gps_regressor_complete.pth"
14
+ model_path = hf_hub_download(repo_id=repo_id, filename=filename)
15
+ # Load the model using torch
16
+ model_test = torch.load(model_path)
17
+ model_test.eval() # Set the model to evaluation mode
18
+ ```
19
+
20
+ The model implementation is here:
21
+ ```
22
+ from transformers import ViTModel
23
+ class HybridGPSModel(nn.Module):
24
+ def __init__(self, num_classes=2):
25
+ super(HybridGPSModel, self).__init__()
26
+ # Pre-trained ResNet for feature extraction
27
+ self.resnet = resnet18(pretrained=True)
28
+ self.resnet.fc = nn.Identity()
29
+ # Pre-trained Vision Transformer
30
+ self.vit = ViTModel.from_pretrained('google/vit-base-patch16-224-in21k')
31
+ # Combined regression head
32
+ self.regression_head = nn.Sequential(
33
+ nn.Linear(512 + self.vit.config.hidden_size, 128),
34
+ nn.ReLU(),
35
+ nn.Linear(128, num_classes)
36
+ )
37
+ def forward(self, x):
38
+ resnet_features = self.resnet(x)
39
+ vit_outputs = self.vit(pixel_values=x)
40
+ vit_features = vit_outputs.last_hidden_state[:, 0, :] # CLS token
41
+ combined_features = torch.cat((resnet_features, vit_features), dim=1)
42
+ # Predict GPS coordinates
43
+ gps_coordinates = self.regression_head(combined_features)
44
+ return gps_coordinates
45
+ ```