File size: 13,789 Bytes
e7c3611
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7dd7e679f490>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7dd7e679f520>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7dd7e679f5b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7dd7e679f640>", "_build": "<function ActorCriticPolicy._build at 0x7dd7e679f6d0>", "forward": "<function ActorCriticPolicy.forward at 0x7dd7e679f760>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7dd7e679f7f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7dd7e679f880>", "_predict": "<function ActorCriticPolicy._predict at 0x7dd7e679f910>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7dd7e679f9a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7dd7e679fa30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7dd7e679fac0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7dd7e673e180>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1714495821999719642, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMDknb0mzxo/HlEcu6Bro76t55C9bbz7PAAAAAAAAAAAJjJbPkj9bz+51LG9IYjYvoKB2j6CVHK+AAAAAAAAAAAzowQ8KZgkukJI1bNiplWvrOVguoKpnTMAAIA/AACAP1bqd76dJyM/Gsj5PSSpgr6QpHg8j8WZvAAAAAAAAAAAcxK2vcpYjz5ibnk97hKMvrwOTbxlFeQ7AAAAAAAAAAAmKrq995ylP+noxr5/+qS+FicXvi2uJ74AAAAAAAAAAJqHTj0pQHy6ujBOtZcU57DxSVg7H2xANAAAgD8AAIA/gO7JvaRWDLsI5Rm7Lri4PJ9/tzt4HZ69AACAPwAAgD9NYyc99uBYujBLTjoGVxc1v24CO2MMc7kAAIA/AACAP836LTyfUNu7Y2pVuofGMb46eU+9SsEZvwAAgD8AAIA/mg3FPBRu8TkikW88a/kVPZu4ajuzamw8AACAPwAAgD9NMbu94VSBumqkVjtGmSo4u8lVO4IOCroAAAAAAACAPz1ph75Uel+9bDOWvKpNULtm0sE+vuoTPAAAgD8AAIA/KkF/vj2cDL3OHYS7oTryub47eT68KLk6AACAPwAAgD/Nmla9KQgqusD8yzpcATo2EI8DutXr6rkAAIA/AACAP6bNyj2gaLs/0rsPP0d5U732x4s9JHWYPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHDX9Oh0yQCMAWyUTeoBjAF0lEdAkVuIfSx7iXV9lChoBkdAY0s1+iJwbWgHTegDaAhHQJFb0TPBzmx1fZQoaAZHQG7mS8rZrYZoB035AWgIR0CRX098qnWKdX2UKGgGR0BwWtxyXD3uaAdNkAJoCEdAkWD5bhWHUXV9lChoBkdAY+GR8twrD2gHTegDaAhHQJFhXSuyNXJ1fZQoaAZHQCckF0PpY9xoB0vPaAhHQJFjpFrl/6R1fZQoaAZHQG8CniFTNt9oB03IA2gIR0CRY6zjFQ2udX2UKGgGR0Bwf3336AOKaAdNbQFoCEdAkWR850bLlnV9lChoBkdAbzLU7Sy+pWgHTTYCaAhHQJFmghC+lCV1fZQoaAZHQG4mpq7AcktoB011AmgIR0CRZ1uzyBkJdX2UKGgGR0Bx6olUp/gBaAdNrwJoCEdAkWemahHsknV9lChoBkdAb2TDF6zE8GgHTagCaAhHQJFolI5HVgB1fZQoaAZHQHGvbx/d69loB00bAmgIR0CRaeCXyAhCdX2UKGgGR0Bxh9c2R7qqaAdNxAFoCEdAkWpwbhm5D3V9lChoBkdAcKeYLb5/LGgHTXMBaAhHQJFr/aews5J1fZQoaAZHQHBt4cBEKE5oB00xAmgIR0CRbSdyT6i1dX2UKGgGR0BwgGP+4smOaAdNtAFoCEdAkW5OuFHrhXV9lChoBkdAUBdjkMkQgGgHS+ZoCEdAkW+Qy2x6fXV9lChoBkdAcB5bTc6/7GgHTaUBaAhHQJFycbPyCnR1fZQoaAZHQHAhqgRK6FxoB03eAWgIR0CRc4aTOgQIdX2UKGgGR0BunVj3Ehq1aAdL/mgIR0CRdRCRwIdEdX2UKGgGR0BeUOWOZLIxaAdN6ANoCEdAkXioT4+KTHV9lChoBkdAbUo03Ov+wWgHTT0BaAhHQJF7o/7iyY51fZQoaAZHQHBP21lXiitoB01uAWgIR0CRfJFpPAO8dX2UKGgGR0BykBbA1vVFaAdNqgFoCEdAkXzX3Hq/unV9lChoBkdAa+tfiPyTZGgHTfMBaAhHQJF+nuPV/c51fZQoaAZHQG75I3R5TqBoB00fAmgIR0CRf5qfe1rqdX2UKGgGR0BxKO5nUUfxaAdNKwFoCEdAkZU8RxtHhHV9lChoBkdAbj2J9iMHbGgHTeMCaAhHQJGVaclPact1fZQoaAZHQHFzr876pHZoB03AAmgIR0CRlfVTJhfCdX2UKGgGR0BwPCqLjxTbaAdNoAFoCEdAkZkn13+uNnV9lChoBkdAcTFYraufVmgHTSADaAhHQJGZ9i4J/od1fZQoaAZHQG7raS9ugpVoB034AWgIR0CRmhtIkJKKdX2UKGgGR0Bsy6rgflp5aAdNLQNoCEdAkZ5m07bL2nV9lChoBkdAcJbe0ojOcGgHTe4BaAhHQJGfDrv9cbB1fZQoaAZHQGtnN4qwyIpoB02QAWgIR0CRogWVeKKpdX2UKGgGR0Buc+7g88s+aAdNIgFoCEdAkaIfReC04XV9lChoBkdAa7DCswL3K2gHTXQBaAhHQJGihUvPC2t1fZQoaAZHQHC5i5AhStNoB01BAWgIR0CRo0J9iMHbdX2UKGgGR0BigT5ylvZRaAdN6ANoCEdAkaO77TDwY3V9lChoBkdAcFXDIBBAwGgHTXQCaAhHQJGrZm8M/hV1fZQoaAZHQHAjnrdFfAtoB01rAmgIR0CRq9jYI0IkdX2UKGgGR0BxlIZR8+ibaAdNlQFoCEdAkaxz+ee4C3V9lChoBkdAcov8K5TZQGgHTccCaAhHQJGshyBClad1fZQoaAZHQHDSZp8F6iVoB01CAWgIR0CRrdZjQRf4dX2UKGgGR0Bwv2/1xsEaaAdNFwJoCEdAka3r8Jlar3V9lChoBkdAYWe99tuUEGgHTegDaAhHQJGu/YUWVNZ1fZQoaAZHQHH0idat9x9oB036AWgIR0CRr7biZOSGdX2UKGgGR0BsdoD5j6N3aAdNPAFoCEdAkbAGTLW7OHV9lChoBkdAcbkNwzch1WgHTSkBaAhHQJGwXv7WNFV1fZQoaAZHQHHyzVUdaMdoB03DAmgIR0CRsdcPOIIodX2UKGgGR0Bypjr5ZbIMaAdNKgJoCEdAkbI9gv114nV9lChoBkdAcRz/rB0p3GgHTVwBaAhHQJGyj/lyR0V1fZQoaAZHQHHnBTbWVeNoB034AWgIR0CRs8d1dPcjdX2UKGgGR0ButwDFId2gaAdNwgFoCEdAkbTj/EOy3XV9lChoBkdAbNNH8TBZZGgHTUMBaAhHQJG5Qwwj+rF1fZQoaAZHQG1azXjENvxoB014AWgIR0CRvVlJ6IFedX2UKGgGR0BtB/Y150KaaAdNlgFoCEdAkb7hyfcvd3V9lChoBkdAcKAKjBVMmGgHTWABaAhHQJG/P2L5ylx1fZQoaAZHQHEsKVY6nzhoB018AWgIR0CRvz64UeuFdX2UKGgGR0BunF9KEnLJaAdNTwFoCEdAkb+iCOFQEnV9lChoBkdAb6FK02LpA2gHTZEBaAhHQJG/+NEPUa11fZQoaAZHQHAO4+Sr5qNoB03oAWgIR0CR0o0Jng5zdX2UKGgGR0BxOtS619fDaAdNPgFoCEdAkdMVTm4iHXV9lChoBkdAcSTwmmce82gHTV0BaAhHQJHTYjQiRnx1fZQoaAZHQHN6+mNzbN9oB02XAWgIR0CR0/B7NSqEdX2UKGgGR0Bxe3csUZeiaAdNUwFoCEdAkdXnC9AX23V9lChoBkdAcCo3I+4b0mgHTW0BaAhHQJHV89eQdS51fZQoaAZHQHAsQmiQDFJoB00WA2gIR0CR1jdJJ5E/dX2UKGgGR0BzWF54W1twaAdNPwFoCEdAkdfq7VawEHV9lChoBkdAcWZe8PFvRGgHTQoCaAhHQJHZjpfQa751fZQoaAZHQHAcvs/pt79oB01IAWgIR0CR2sEIPbwjdX2UKGgGR0BvRoE+xGDuaAdNOgFoCEdAkdygNCqp+HV9lChoBkdAcIl580DU3GgHTVoBaAhHQJHdL9uP3i91fZQoaAZHQGtEZLh73PBoB00oAWgIR0CR3TxkupS8dX2UKGgGR0BwoetITXaraAdNhAFoCEdAkd9Sg00m+nV9lChoBkdAceshStNi6WgHTTMBaAhHQJHfXeKsMiN1fZQoaAZHQHDsGkFfReFoB01lAWgIR0CR4E2JBPbgdX2UKGgGR0BwclytFKChaAdNmgFoCEdAkeLCj59E1HV9lChoBkdAbdau4gA6uGgHTVABaAhHQJHjN5Pdl/Z1fZQoaAZHQGveWDpTuOVoB01vAWgIR0CR5At4iX6ZdX2UKGgGR0BxB29i+cpcaAdNMgFoCEdAkeQs+qzZ6HV9lChoBkdAbmmUYbbUPWgHTYgBaAhHQJHlEi9qUNd1fZQoaAZHQG5SoMjNY8xoB003AmgIR0CR5eysCDEndX2UKGgGR0BxdqcYqG1yaAdNRgJoCEdAkeb9JJ5E+nV9lChoBkdAcIz544ZMtmgHTQ4BaAhHQJHojXg9/z91fZQoaAZHQGQSRGUfPopoB03oA2gIR0CR6vIV/MGHdX2UKGgGR0BtRxU3n6l+aAdNhgFoCEdAkeuW1pj+aXV9lChoBkdAcYaUxVQyh2gHTWUBaAhHQJHs2kLx7Rh1fZQoaAZHQHDCq6BiCrdoB01OAWgIR0CR7yHoHLRsdX2UKGgGR0ByU4Pf8/D+aAdNJQFoCEdAkfBbWuoxYnV9lChoBkdAcTvBNEgGKWgHTRoBaAhHQJHwu/h2nsN1fZQoaAZHQHGFgksz2vloB00DAWgIR0CR8Xy4FzMidX2UKGgGR0BvIoRqXWvsaAdNVQFoCEdAkfHCxRl6JXV9lChoBkdAcEku0TlDGGgHTWYBaAhHQJH001hsqKB1fZQoaAZHQHIz7Jnxri5oB01RAWgIR0CR9yhky1u0dX2UKGgGR0Bv+d/e+Eh8aAdNGAFoCEdAkfduJUHY6HV9lChoBkdAb9YGPgeijGgHTTgBaAhHQJH6DQRf4RF1fZQoaAZHQG9cyhSLqD9oB03XAWgIR0CR+703wTdtdX2UKGgGR0Bxvz2tdRixaAdNBAFoCEdAkfwBvrGBF3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}