Felladrin commited on
Commit
d056075
·
verified ·
1 Parent(s): aaf2464

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +59 -35
README.md CHANGED
@@ -36,12 +36,11 @@ inference:
36
 
37
  ## Summary
38
 
39
- Minueza-32M-Base is a foundation model with 32 million parameters trained from scratch.
40
 
41
- The following versions of this model are available:
42
 
43
- - [Minueza-32M-Base](https://huggingface.co/Felladrin/Minueza-32M-Base): The base model, trained from scratch on a large corpus of text in English.
44
- - [Minueza-32M-Chat](https://huggingface.co/Felladrin/Minueza-32M-Chat): A version of the base model fine-tuned on conversational datasets.
45
 
46
  ## Intended Uses
47
 
@@ -68,37 +67,9 @@ The model was trained on a subset of each of the following non-synthetic dataset
68
 
69
  The subsets were interleaved to form the final training corpus of approximately 650 million tokens.
70
 
71
- ## Usage
72
-
73
- This is a pre-trained foundation model. For your task, you will likely want to perform application-specific fine-tuning.
74
-
75
- Also note that this model was trained on internet text data, which may contain biases, offensive or inappropriate content, and may produce incorrect or irrelevant responses. No evaluation has been conducted, so use with care.
76
-
77
- Having that said, here's how you can run it:
78
-
79
- ```python
80
- from transformers import pipeline
81
-
82
- generate = pipeline("text-generation", "Felladrin/Minueza-32M-Base")
83
-
84
- prompt = "The best way to improve your health is"
85
-
86
- output = generate(
87
- prompt,
88
- max_new_tokens=256,
89
- do_sample=True,
90
- temperature=0.72,
91
- top_p=0.73,
92
- top_k=50,
93
- repetition_penalty=1.176,
94
- )
95
-
96
- print(output[0]["generated_text"])
97
- ```
98
-
99
  ## Model Architecture
100
 
101
- Trained on a context window of 2048 tokens, this is a transformer model with the Mistral architecture, which includes Grouped-Query Attention, Sliding-Window Attention, and Byte-fallback BPE tokenizer.
102
 
103
  | Configuration | Value |
104
  | :---------------------- | :---- |
@@ -110,7 +81,7 @@ Trained on a context window of 2048 tokens, this is a transformer model with the
110
  | num_key_value_heads | 4 |
111
  | vocab_size | 32002 |
112
 
113
- ## Training
114
 
115
  | Hyperparameter | Value |
116
  | :-------------------------- | :-------------------------------------------- |
@@ -122,7 +93,6 @@ Trained on a context window of 2048 tokens, this is a transformer model with the
122
  | total_train_batch_size | 8 |
123
  | optimizer | Adam with betas=(0.9,0.999) and epsilon=1e-08 |
124
  | lr_scheduler_type | linear |
125
- | num_epochs | 1.0 |
126
 
127
  | Framework | Version |
128
  | :----------- | :---------- |
@@ -131,6 +101,60 @@ Trained on a context window of 2048 tokens, this is a transformer model with the
131
  | Datasets | 2.16.1 |
132
  | Tokenizers | 0.15.1 |
133
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
134
  ## License
135
 
136
  This model is licensed under the [Apache License 2.0](https://huggingface.co/Felladrin/Minueza-32M-Base/resolve/main/license.txt).
 
36
 
37
  ## Summary
38
 
39
+ Minueza-32M-Base is a foundation model with 32 million parameters trained from scratch on a large corpus of text in English.
40
 
41
+ It's available in the following formats: [Safetensors](https://huggingface.co/Felladrin/Minueza-32M-Base), [GGUF](https://huggingface.co/Felladrin/gguf-Minueza-32M-Base), and [ONNX](https://huggingface.co/Felladrin/onnx-Minueza-32M-Base).
42
 
43
+ And it's being released alongside a fine-tuned version trained in conversational datasets: [Minueza-32M-Chat](https://huggingface.co/Felladrin/Minueza-32M-Chat)
 
44
 
45
  ## Intended Uses
46
 
 
67
 
68
  The subsets were interleaved to form the final training corpus of approximately 650 million tokens.
69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70
  ## Model Architecture
71
 
72
+ This is a transformer model with the Mistral architecture, trained on a context window of 2048 tokens.
73
 
74
  | Configuration | Value |
75
  | :---------------------- | :---- |
 
81
  | num_key_value_heads | 4 |
82
  | vocab_size | 32002 |
83
 
84
+ The pretraining was made with these hyperparameters and frameworks:
85
 
86
  | Hyperparameter | Value |
87
  | :-------------------------- | :-------------------------------------------- |
 
93
  | total_train_batch_size | 8 |
94
  | optimizer | Adam with betas=(0.9,0.999) and epsilon=1e-08 |
95
  | lr_scheduler_type | linear |
 
96
 
97
  | Framework | Version |
98
  | :----------- | :---------- |
 
101
  | Datasets | 2.16.1 |
102
  | Tokenizers | 0.15.1 |
103
 
104
+ ## Fine-tuning
105
+
106
+ The recommended settings for fine-tuning this model are the following.
107
+
108
+ For Supervised Fine-Tuning:
109
+
110
+ | Hyperparameter | Value |
111
+ | :-------------------------- | :-------------------------------------------- |
112
+ | learning_rate | 2e-5 |
113
+ | total_train_batch_size | 24 |
114
+ | max_seq_length | 2048 |
115
+ | weight_decay | 0 |
116
+ | warmup_ratio | 0.02 |
117
+
118
+ For Direct Preference Optimization:
119
+
120
+ | Hyperparameter | Value |
121
+ | :-------------------------- | :-------------------------------------------- |
122
+ | learning_rate | 7.5e-7 |
123
+ | total_train_batch_size | 6 |
124
+ | max_length | 2048 |
125
+ | max_prompt_length | 1536 |
126
+ | max_steps | 200 |
127
+ | weight_decay | 0 |
128
+ | warmup_ratio | 0.02 |
129
+
130
+ ## Usage
131
+
132
+ This is just a base model. For your task, you will likely want to perform application-specific fine-tuning as recommended above.
133
+
134
+ Also note that this model was trained on internet text data, which may contain biases, offensive or inappropriate content, and may produce incorrect or irrelevant responses. No evaluation has been conducted, so use with care.
135
+
136
+ Having that said, here's how you can run it:
137
+
138
+ ```python
139
+ from transformers import pipeline
140
+
141
+ generate = pipeline("text-generation", "Felladrin/Minueza-32M-Base")
142
+
143
+ prompt = "The best way to improve your health is"
144
+
145
+ output = generate(
146
+ prompt,
147
+ max_new_tokens=256,
148
+ do_sample=True,
149
+ temperature=0.72,
150
+ top_p=0.73,
151
+ top_k=50,
152
+ repetition_penalty=1.176,
153
+ )
154
+
155
+ print(output[0]["generated_text"])
156
+ ```
157
+
158
  ## License
159
 
160
  This model is licensed under the [Apache License 2.0](https://huggingface.co/Felladrin/Minueza-32M-Base/resolve/main/license.txt).