|
from scripts.physton_prompt.translator.base_tanslator import BaseTranslator |
|
import json |
|
from scripts.physton_prompt.get_lang import get_lang |
|
|
|
|
|
class OpenaiTranslator(BaseTranslator): |
|
def __init__(self): |
|
super().__init__('openai') |
|
|
|
def translate(self, text): |
|
if not text: |
|
if isinstance(text, list): |
|
return [] |
|
else: |
|
return '' |
|
import openai |
|
openai.api_base = self.api_config.get('api_base', 'https://api.openai.com/v1') |
|
openai.api_key = self.api_config.get('api_key', '') |
|
model = self.api_config.get('model', 'gpt-3.5-turbo') |
|
if not openai.api_key: |
|
raise Exception(get_lang('is_required', {'0': 'API Key'})) |
|
|
|
body = [] |
|
if isinstance(text, list): |
|
for item in text: |
|
body.append({'text': item}) |
|
else: |
|
body.append({'text': text}) |
|
|
|
body_str = json.dumps(body, ensure_ascii=False) |
|
|
|
messages = [ |
|
{"role": "system", "content": "You are a translator assistant."}, |
|
{ |
|
"role": "user", |
|
"content": f"You are a translator assistant. Please translate the following JSON data {self.to_lang}. Preserve the original format. Only return the translation result, without any additional content or annotations. If the prompt word is in the target language, please send it to me unchanged:\n{body_str}" |
|
}, |
|
] |
|
completion = openai.ChatCompletion.create(model=model, messages=messages, timeout=60) |
|
if len(completion.choices) == 0: |
|
raise Exception(get_lang('no_response_from', {'0': 'OpenAI'})) |
|
content = completion.choices[0].message.content |
|
try: |
|
|
|
start = content.index('[') |
|
end = content.rindex(']') |
|
if start == -1 or end == -1: |
|
raise Exception(get_lang('response_error', {'0': 'OpenAI'})) |
|
result_json = '[' + content[start + 1:end] + ']' |
|
|
|
result = json.loads(result_json) |
|
if isinstance(text, list): |
|
return [item['text'] for item in result] |
|
else: |
|
return result[0]['text'] |
|
except Exception as e: |
|
raise Exception(get_lang('response_error', {'0': 'OpenAI'})) |
|
|
|
def translate_batch(self, texts): |
|
return self.translate(texts) |
|
|