|
import datetime |
|
import json |
|
import mimetypes |
|
import os |
|
import sys |
|
from functools import reduce |
|
import warnings |
|
|
|
import gradio as gr |
|
import gradio.utils |
|
import numpy as np |
|
from PIL import Image, PngImagePlugin |
|
from modules.call_queue import wrap_gradio_gpu_call, wrap_queued_call, wrap_gradio_call |
|
|
|
from modules import sd_hijack, sd_models, script_callbacks, ui_extensions, deepbooru, sd_vae, extra_networks, ui_common, ui_postprocessing, progress, ui_loadsave, errors, shared_items, ui_settings, timer, sysinfo |
|
from modules.ui_components import FormRow, FormGroup, ToolButton, FormHTML |
|
from modules.paths import script_path |
|
from modules.ui_common import create_refresh_button |
|
from modules.ui_gradio_extensions import reload_javascript |
|
|
|
|
|
from modules.shared import opts, cmd_opts |
|
|
|
import modules.codeformer_model |
|
import modules.generation_parameters_copypaste as parameters_copypaste |
|
import modules.gfpgan_model |
|
import modules.hypernetworks.ui |
|
import modules.scripts |
|
import modules.shared as shared |
|
import modules.styles |
|
import modules.textual_inversion.ui |
|
from modules import prompt_parser |
|
from modules.sd_hijack import model_hijack |
|
from modules.sd_samplers import samplers, samplers_for_img2img |
|
from modules.textual_inversion import textual_inversion |
|
import modules.hypernetworks.ui |
|
from modules.generation_parameters_copypaste import image_from_url_text |
|
import modules.extras |
|
|
|
create_setting_component = ui_settings.create_setting_component |
|
|
|
warnings.filterwarnings("default" if opts.show_warnings else "ignore", category=UserWarning) |
|
|
|
|
|
mimetypes.init() |
|
mimetypes.add_type('application/javascript', '.js') |
|
|
|
if not cmd_opts.share and not cmd_opts.listen: |
|
|
|
gradio.utils.version_check = lambda: None |
|
gradio.utils.get_local_ip_address = lambda: '127.0.0.1' |
|
|
|
if cmd_opts.ngrok is not None: |
|
import modules.ngrok as ngrok |
|
print('ngrok authtoken detected, trying to connect...') |
|
ngrok.connect( |
|
cmd_opts.ngrok, |
|
cmd_opts.port if cmd_opts.port is not None else 7860, |
|
cmd_opts.ngrok_options |
|
) |
|
|
|
|
|
def gr_show(visible=True): |
|
return {"visible": visible, "__type__": "update"} |
|
|
|
|
|
sample_img2img = "assets/stable-samples/img2img/sketch-mountains-input.jpg" |
|
sample_img2img = sample_img2img if os.path.exists(sample_img2img) else None |
|
|
|
|
|
|
|
random_symbol = '\U0001f3b2\ufe0f' |
|
reuse_symbol = '\u267b\ufe0f' |
|
paste_symbol = '\u2199\ufe0f' |
|
refresh_symbol = '\U0001f504' |
|
save_style_symbol = '\U0001f4be' |
|
apply_style_symbol = '\U0001f4cb' |
|
clear_prompt_symbol = '\U0001f5d1\ufe0f' |
|
extra_networks_symbol = '\U0001F3B4' |
|
switch_values_symbol = '\U000021C5' |
|
restore_progress_symbol = '\U0001F300' |
|
detect_image_size_symbol = '\U0001F4D0' |
|
up_down_symbol = '\u2195\ufe0f' |
|
|
|
|
|
plaintext_to_html = ui_common.plaintext_to_html |
|
|
|
|
|
def send_gradio_gallery_to_image(x): |
|
if len(x) == 0: |
|
return None |
|
return image_from_url_text(x[0]) |
|
|
|
|
|
def add_style(name: str, prompt: str, negative_prompt: str): |
|
if name is None: |
|
return [gr_show() for x in range(4)] |
|
|
|
style = modules.styles.PromptStyle(name, prompt, negative_prompt) |
|
shared.prompt_styles.styles[style.name] = style |
|
|
|
|
|
shared.prompt_styles.save_styles(shared.styles_filename) |
|
|
|
return [gr.Dropdown.update(visible=True, choices=list(shared.prompt_styles.styles)) for _ in range(2)] |
|
|
|
|
|
def calc_resolution_hires(enable, width, height, hr_scale, hr_resize_x, hr_resize_y): |
|
from modules import processing, devices |
|
|
|
if not enable: |
|
return "" |
|
|
|
p = processing.StableDiffusionProcessingTxt2Img(width=width, height=height, enable_hr=True, hr_scale=hr_scale, hr_resize_x=hr_resize_x, hr_resize_y=hr_resize_y) |
|
|
|
with devices.autocast(): |
|
p.init([""], [0], [0]) |
|
|
|
return f"resize: from <span class='resolution'>{p.width}x{p.height}</span> to <span class='resolution'>{p.hr_resize_x or p.hr_upscale_to_x}x{p.hr_resize_y or p.hr_upscale_to_y}</span>" |
|
|
|
|
|
def resize_from_to_html(width, height, scale_by): |
|
target_width = int(width * scale_by) |
|
target_height = int(height * scale_by) |
|
|
|
if not target_width or not target_height: |
|
return "no image selected" |
|
|
|
return f"resize: from <span class='resolution'>{width}x{height}</span> to <span class='resolution'>{target_width}x{target_height}</span>" |
|
|
|
|
|
def apply_styles(prompt, prompt_neg, styles): |
|
prompt = shared.prompt_styles.apply_styles_to_prompt(prompt, styles) |
|
prompt_neg = shared.prompt_styles.apply_negative_styles_to_prompt(prompt_neg, styles) |
|
|
|
return [gr.Textbox.update(value=prompt), gr.Textbox.update(value=prompt_neg), gr.Dropdown.update(value=[])] |
|
|
|
|
|
def process_interrogate(interrogation_function, mode, ii_input_dir, ii_output_dir, *ii_singles): |
|
if mode in {0, 1, 3, 4}: |
|
return [interrogation_function(ii_singles[mode]), None] |
|
elif mode == 2: |
|
return [interrogation_function(ii_singles[mode]["image"]), None] |
|
elif mode == 5: |
|
assert not shared.cmd_opts.hide_ui_dir_config, "Launched with --hide-ui-dir-config, batch img2img disabled" |
|
images = shared.listfiles(ii_input_dir) |
|
print(f"Will process {len(images)} images.") |
|
if ii_output_dir != "": |
|
os.makedirs(ii_output_dir, exist_ok=True) |
|
else: |
|
ii_output_dir = ii_input_dir |
|
|
|
for image in images: |
|
img = Image.open(image) |
|
filename = os.path.basename(image) |
|
left, _ = os.path.splitext(filename) |
|
print(interrogation_function(img), file=open(os.path.join(ii_output_dir, f"{left}.txt"), 'a', encoding='utf-8')) |
|
|
|
return [gr.update(), None] |
|
|
|
|
|
def interrogate(image): |
|
prompt = shared.interrogator.interrogate(image.convert("RGB")) |
|
return gr.update() if prompt is None else prompt |
|
|
|
|
|
def interrogate_deepbooru(image): |
|
prompt = deepbooru.model.tag(image) |
|
return gr.update() if prompt is None else prompt |
|
|
|
|
|
def create_seed_inputs(target_interface): |
|
with FormRow(elem_id=f"{target_interface}_seed_row", variant="compact"): |
|
seed = (gr.Textbox if cmd_opts.use_textbox_seed else gr.Number)(label='Seed', value=-1, elem_id=f"{target_interface}_seed") |
|
seed.style(container=False) |
|
random_seed = ToolButton(random_symbol, elem_id=f"{target_interface}_random_seed", label='Random seed') |
|
reuse_seed = ToolButton(reuse_symbol, elem_id=f"{target_interface}_reuse_seed", label='Reuse seed') |
|
|
|
seed_checkbox = gr.Checkbox(label='Extra', elem_id=f"{target_interface}_subseed_show", value=False) |
|
|
|
|
|
seed_extras = [] |
|
|
|
with FormRow(visible=False, elem_id=f"{target_interface}_subseed_row") as seed_extra_row_1: |
|
seed_extras.append(seed_extra_row_1) |
|
subseed = gr.Number(label='Variation seed', value=-1, elem_id=f"{target_interface}_subseed") |
|
subseed.style(container=False) |
|
random_subseed = ToolButton(random_symbol, elem_id=f"{target_interface}_random_subseed") |
|
reuse_subseed = ToolButton(reuse_symbol, elem_id=f"{target_interface}_reuse_subseed") |
|
subseed_strength = gr.Slider(label='Variation strength', value=0.0, minimum=0, maximum=1, step=0.01, elem_id=f"{target_interface}_subseed_strength") |
|
|
|
with FormRow(visible=False) as seed_extra_row_2: |
|
seed_extras.append(seed_extra_row_2) |
|
seed_resize_from_w = gr.Slider(minimum=0, maximum=2048, step=8, label="Resize seed from width", value=0, elem_id=f"{target_interface}_seed_resize_from_w") |
|
seed_resize_from_h = gr.Slider(minimum=0, maximum=2048, step=8, label="Resize seed from height", value=0, elem_id=f"{target_interface}_seed_resize_from_h") |
|
|
|
random_seed.click(fn=None, _js="function(){setRandomSeed('" + target_interface + "_seed')}", show_progress=False, inputs=[], outputs=[]) |
|
random_subseed.click(fn=None, _js="function(){setRandomSeed('" + target_interface + "_subseed')}", show_progress=False, inputs=[], outputs=[]) |
|
|
|
def change_visibility(show): |
|
return {comp: gr_show(show) for comp in seed_extras} |
|
|
|
seed_checkbox.change(change_visibility, show_progress=False, inputs=[seed_checkbox], outputs=seed_extras) |
|
|
|
return seed, reuse_seed, subseed, reuse_subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox |
|
|
|
|
|
|
|
def connect_clear_prompt(button): |
|
"""Given clear button, prompt, and token_counter objects, setup clear prompt button click event""" |
|
button.click( |
|
_js="clear_prompt", |
|
fn=None, |
|
inputs=[], |
|
outputs=[], |
|
) |
|
|
|
|
|
def connect_reuse_seed(seed: gr.Number, reuse_seed: gr.Button, generation_info: gr.Textbox, dummy_component, is_subseed): |
|
""" Connects a 'reuse (sub)seed' button's click event so that it copies last used |
|
(sub)seed value from generation info the to the seed field. If copying subseed and subseed strength |
|
was 0, i.e. no variation seed was used, it copies the normal seed value instead.""" |
|
def copy_seed(gen_info_string: str, index): |
|
res = -1 |
|
|
|
try: |
|
gen_info = json.loads(gen_info_string) |
|
index -= gen_info.get('index_of_first_image', 0) |
|
|
|
if is_subseed and gen_info.get('subseed_strength', 0) > 0: |
|
all_subseeds = gen_info.get('all_subseeds', [-1]) |
|
res = all_subseeds[index if 0 <= index < len(all_subseeds) else 0] |
|
else: |
|
all_seeds = gen_info.get('all_seeds', [-1]) |
|
res = all_seeds[index if 0 <= index < len(all_seeds) else 0] |
|
|
|
except json.decoder.JSONDecodeError: |
|
if gen_info_string: |
|
errors.report(f"Error parsing JSON generation info: {gen_info_string}") |
|
|
|
return [res, gr_show(False)] |
|
|
|
reuse_seed.click( |
|
fn=copy_seed, |
|
_js="(x, y) => [x, selected_gallery_index()]", |
|
show_progress=False, |
|
inputs=[generation_info, dummy_component], |
|
outputs=[seed, dummy_component] |
|
) |
|
|
|
|
|
def update_token_counter(text, steps): |
|
try: |
|
text, _ = extra_networks.parse_prompt(text) |
|
|
|
_, prompt_flat_list, _ = prompt_parser.get_multicond_prompt_list([text]) |
|
prompt_schedules = prompt_parser.get_learned_conditioning_prompt_schedules(prompt_flat_list, steps) |
|
|
|
except Exception: |
|
|
|
|
|
prompt_schedules = [[[steps, text]]] |
|
|
|
flat_prompts = reduce(lambda list1, list2: list1+list2, prompt_schedules) |
|
prompts = [prompt_text for step, prompt_text in flat_prompts] |
|
token_count, max_length = max([model_hijack.get_prompt_lengths(prompt) for prompt in prompts], key=lambda args: args[0]) |
|
return f"<span class='gr-box gr-text-input'>{token_count}/{max_length}</span>" |
|
|
|
|
|
def create_toprow(is_img2img): |
|
id_part = "img2img" if is_img2img else "txt2img" |
|
|
|
with gr.Row(elem_id=f"{id_part}_toprow", variant="compact"): |
|
with gr.Column(elem_id=f"{id_part}_prompt_container", scale=6): |
|
with gr.Row(): |
|
with gr.Column(scale=80): |
|
with gr.Row(): |
|
prompt = gr.Textbox(label="Prompt", elem_id=f"{id_part}_prompt", show_label=False, lines=3, placeholder="Prompt (press Ctrl+Enter or Alt+Enter to generate)", elem_classes=["prompt"]) |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=80): |
|
with gr.Row(): |
|
negative_prompt = gr.Textbox(label="Negative prompt", elem_id=f"{id_part}_neg_prompt", show_label=False, lines=3, placeholder="Negative prompt (press Ctrl+Enter or Alt+Enter to generate)", elem_classes=["prompt"]) |
|
|
|
button_interrogate = None |
|
button_deepbooru = None |
|
if is_img2img: |
|
with gr.Column(scale=1, elem_classes="interrogate-col"): |
|
button_interrogate = gr.Button('Interrogate\nCLIP', elem_id="interrogate") |
|
button_deepbooru = gr.Button('Interrogate\nDeepBooru', elem_id="deepbooru") |
|
|
|
with gr.Column(scale=1, elem_id=f"{id_part}_actions_column"): |
|
with gr.Row(elem_id=f"{id_part}_generate_box", elem_classes="generate-box"): |
|
interrupt = gr.Button('Interrupt', elem_id=f"{id_part}_interrupt", elem_classes="generate-box-interrupt") |
|
skip = gr.Button('Skip', elem_id=f"{id_part}_skip", elem_classes="generate-box-skip") |
|
submit = gr.Button('Generate', elem_id=f"{id_part}_generate", variant='primary') |
|
|
|
skip.click( |
|
fn=lambda: shared.state.skip(), |
|
inputs=[], |
|
outputs=[], |
|
) |
|
|
|
interrupt.click( |
|
fn=lambda: shared.state.interrupt(), |
|
inputs=[], |
|
outputs=[], |
|
) |
|
|
|
with gr.Row(elem_id=f"{id_part}_tools"): |
|
paste = ToolButton(value=paste_symbol, elem_id="paste") |
|
clear_prompt_button = ToolButton(value=clear_prompt_symbol, elem_id=f"{id_part}_clear_prompt") |
|
extra_networks_button = ToolButton(value=extra_networks_symbol, elem_id=f"{id_part}_extra_networks") |
|
prompt_style_apply = ToolButton(value=apply_style_symbol, elem_id=f"{id_part}_style_apply") |
|
save_style = ToolButton(value=save_style_symbol, elem_id=f"{id_part}_style_create") |
|
restore_progress_button = ToolButton(value=restore_progress_symbol, elem_id=f"{id_part}_restore_progress", visible=False) |
|
|
|
token_counter = gr.HTML(value="<span>0/75</span>", elem_id=f"{id_part}_token_counter", elem_classes=["token-counter"]) |
|
token_button = gr.Button(visible=False, elem_id=f"{id_part}_token_button") |
|
negative_token_counter = gr.HTML(value="<span>0/75</span>", elem_id=f"{id_part}_negative_token_counter", elem_classes=["token-counter"]) |
|
negative_token_button = gr.Button(visible=False, elem_id=f"{id_part}_negative_token_button") |
|
|
|
clear_prompt_button.click( |
|
fn=lambda *x: x, |
|
_js="confirm_clear_prompt", |
|
inputs=[prompt, negative_prompt], |
|
outputs=[prompt, negative_prompt], |
|
) |
|
|
|
with gr.Row(elem_id=f"{id_part}_styles_row"): |
|
prompt_styles = gr.Dropdown(label="Styles", elem_id=f"{id_part}_styles", choices=[k for k, v in shared.prompt_styles.styles.items()], value=[], multiselect=True) |
|
create_refresh_button(prompt_styles, shared.prompt_styles.reload, lambda: {"choices": [k for k, v in shared.prompt_styles.styles.items()]}, f"refresh_{id_part}_styles") |
|
|
|
return prompt, prompt_styles, negative_prompt, submit, button_interrogate, button_deepbooru, prompt_style_apply, save_style, paste, extra_networks_button, token_counter, token_button, negative_token_counter, negative_token_button, restore_progress_button |
|
|
|
|
|
def setup_progressbar(*args, **kwargs): |
|
pass |
|
|
|
|
|
def apply_setting(key, value): |
|
if value is None: |
|
return gr.update() |
|
|
|
if shared.cmd_opts.freeze_settings: |
|
return gr.update() |
|
|
|
|
|
if key == "sd_model_checkpoint" and opts.disable_weights_auto_swap: |
|
return gr.update() |
|
|
|
if key == "sd_model_checkpoint": |
|
ckpt_info = sd_models.get_closet_checkpoint_match(value) |
|
|
|
if ckpt_info is not None: |
|
value = ckpt_info.title |
|
else: |
|
return gr.update() |
|
|
|
comp_args = opts.data_labels[key].component_args |
|
if comp_args and isinstance(comp_args, dict) and comp_args.get('visible') is False: |
|
return |
|
|
|
valtype = type(opts.data_labels[key].default) |
|
oldval = opts.data.get(key, None) |
|
opts.data[key] = valtype(value) if valtype != type(None) else value |
|
if oldval != value and opts.data_labels[key].onchange is not None: |
|
opts.data_labels[key].onchange() |
|
|
|
opts.save(shared.config_filename) |
|
return getattr(opts, key) |
|
|
|
|
|
def create_output_panel(tabname, outdir): |
|
return ui_common.create_output_panel(tabname, outdir) |
|
|
|
|
|
def create_sampler_and_steps_selection(choices, tabname): |
|
if opts.samplers_in_dropdown: |
|
with FormRow(elem_id=f"sampler_selection_{tabname}"): |
|
sampler_index = gr.Dropdown(label='Sampling method', elem_id=f"{tabname}_sampling", choices=[x.name for x in choices], value=choices[0].name, type="index") |
|
steps = gr.Slider(minimum=1, maximum=150, step=1, elem_id=f"{tabname}_steps", label="Sampling steps", value=20) |
|
else: |
|
with FormGroup(elem_id=f"sampler_selection_{tabname}"): |
|
steps = gr.Slider(minimum=1, maximum=150, step=1, elem_id=f"{tabname}_steps", label="Sampling steps", value=20) |
|
sampler_index = gr.Radio(label='Sampling method', elem_id=f"{tabname}_sampling", choices=[x.name for x in choices], value=choices[0].name, type="index") |
|
|
|
return steps, sampler_index |
|
|
|
|
|
def ordered_ui_categories(): |
|
user_order = {x.strip(): i * 2 + 1 for i, x in enumerate(shared.opts.ui_reorder_list)} |
|
|
|
for _, category in sorted(enumerate(shared_items.ui_reorder_categories()), key=lambda x: user_order.get(x[1], x[0] * 2 + 0)): |
|
yield category |
|
|
|
|
|
def create_override_settings_dropdown(tabname, row): |
|
dropdown = gr.Dropdown([], label="Override settings", visible=False, elem_id=f"{tabname}_override_settings", multiselect=True) |
|
|
|
dropdown.change( |
|
fn=lambda x: gr.Dropdown.update(visible=bool(x)), |
|
inputs=[dropdown], |
|
outputs=[dropdown], |
|
) |
|
|
|
return dropdown |
|
|
|
|
|
def create_ui(): |
|
import modules.img2img |
|
import modules.txt2img |
|
|
|
reload_javascript() |
|
|
|
parameters_copypaste.reset() |
|
|
|
modules.scripts.scripts_current = modules.scripts.scripts_txt2img |
|
modules.scripts.scripts_txt2img.initialize_scripts(is_img2img=False) |
|
|
|
with gr.Blocks(analytics_enabled=False) as txt2img_interface: |
|
txt2img_prompt, txt2img_prompt_styles, txt2img_negative_prompt, submit, _, _, txt2img_prompt_style_apply, txt2img_save_style, txt2img_paste, extra_networks_button, token_counter, token_button, negative_token_counter, negative_token_button, restore_progress_button = create_toprow(is_img2img=False) |
|
|
|
dummy_component = gr.Label(visible=False) |
|
txt_prompt_img = gr.File(label="", elem_id="txt2img_prompt_image", file_count="single", type="binary", visible=False) |
|
|
|
with FormRow(variant='compact', elem_id="txt2img_extra_networks", visible=False) as extra_networks: |
|
from modules import ui_extra_networks |
|
extra_networks_ui = ui_extra_networks.create_ui(extra_networks, extra_networks_button, 'txt2img') |
|
|
|
with gr.Row().style(equal_height=False): |
|
with gr.Column(variant='compact', elem_id="txt2img_settings"): |
|
modules.scripts.scripts_txt2img.prepare_ui() |
|
|
|
for category in ordered_ui_categories(): |
|
if category == "sampler": |
|
steps, sampler_index = create_sampler_and_steps_selection(samplers, "txt2img") |
|
|
|
elif category == "dimensions": |
|
with FormRow(): |
|
with gr.Column(elem_id="txt2img_column_size", scale=4): |
|
width = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512, elem_id="txt2img_width") |
|
height = gr.Slider(minimum=64, maximum=2048, step=8, label="Height", value=512, elem_id="txt2img_height") |
|
|
|
with gr.Column(elem_id="txt2img_dimensions_row", scale=1, elem_classes="dimensions-tools"): |
|
res_switch_btn = ToolButton(value=switch_values_symbol, elem_id="txt2img_res_switch_btn", label="Switch dims") |
|
|
|
if opts.dimensions_and_batch_together: |
|
with gr.Column(elem_id="txt2img_column_batch"): |
|
batch_count = gr.Slider(minimum=1, step=1, label='Batch count', value=1, elem_id="txt2img_batch_count") |
|
batch_size = gr.Slider(minimum=1, maximum=8, step=1, label='Batch size', value=1, elem_id="txt2img_batch_size") |
|
|
|
elif category == "cfg": |
|
cfg_scale = gr.Slider(minimum=1.0, maximum=30.0, step=0.5, label='CFG Scale', value=7.0, elem_id="txt2img_cfg_scale") |
|
|
|
elif category == "seed": |
|
seed, reuse_seed, subseed, reuse_subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox = create_seed_inputs('txt2img') |
|
|
|
elif category == "checkboxes": |
|
with FormRow(elem_classes="checkboxes-row", variant="compact"): |
|
restore_faces = gr.Checkbox(label='Restore faces', value=False, visible=len(shared.face_restorers) > 1, elem_id="txt2img_restore_faces") |
|
tiling = gr.Checkbox(label='Tiling', value=False, elem_id="txt2img_tiling") |
|
enable_hr = gr.Checkbox(label='Hires. fix', value=False, elem_id="txt2img_enable_hr") |
|
hr_final_resolution = FormHTML(value="", elem_id="txtimg_hr_finalres", label="Upscaled resolution", interactive=False) |
|
|
|
elif category == "hires_fix": |
|
with FormGroup(visible=False, elem_id="txt2img_hires_fix") as hr_options: |
|
with FormRow(elem_id="txt2img_hires_fix_row1", variant="compact"): |
|
hr_upscaler = gr.Dropdown(label="Upscaler", elem_id="txt2img_hr_upscaler", choices=[*shared.latent_upscale_modes, *[x.name for x in shared.sd_upscalers]], value=shared.latent_upscale_default_mode) |
|
hr_second_pass_steps = gr.Slider(minimum=0, maximum=150, step=1, label='Hires steps', value=0, elem_id="txt2img_hires_steps") |
|
denoising_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising strength', value=0.7, elem_id="txt2img_denoising_strength") |
|
|
|
with FormRow(elem_id="txt2img_hires_fix_row2", variant="compact"): |
|
hr_scale = gr.Slider(minimum=1.0, maximum=4.0, step=0.05, label="Upscale by", value=2.0, elem_id="txt2img_hr_scale") |
|
hr_resize_x = gr.Slider(minimum=0, maximum=2048, step=8, label="Resize width to", value=0, elem_id="txt2img_hr_resize_x") |
|
hr_resize_y = gr.Slider(minimum=0, maximum=2048, step=8, label="Resize height to", value=0, elem_id="txt2img_hr_resize_y") |
|
|
|
with FormRow(elem_id="txt2img_hires_fix_row3", variant="compact", visible=opts.hires_fix_show_sampler) as hr_sampler_container: |
|
hr_sampler_index = gr.Dropdown(label='Hires sampling method', elem_id="hr_sampler", choices=["Use same sampler"] + [x.name for x in samplers_for_img2img], value="Use same sampler", type="index") |
|
|
|
with FormRow(elem_id="txt2img_hires_fix_row4", variant="compact", visible=opts.hires_fix_show_prompts) as hr_prompts_container: |
|
with gr.Column(scale=80): |
|
with gr.Row(): |
|
hr_prompt = gr.Textbox(label="Hires prompt", elem_id="hires_prompt", show_label=False, lines=3, placeholder="Prompt for hires fix pass.\nLeave empty to use the same prompt as in first pass.", elem_classes=["prompt"]) |
|
with gr.Column(scale=80): |
|
with gr.Row(): |
|
hr_negative_prompt = gr.Textbox(label="Hires negative prompt", elem_id="hires_neg_prompt", show_label=False, lines=3, placeholder="Negative prompt for hires fix pass.\nLeave empty to use the same negative prompt as in first pass.", elem_classes=["prompt"]) |
|
|
|
elif category == "batch": |
|
if not opts.dimensions_and_batch_together: |
|
with FormRow(elem_id="txt2img_column_batch"): |
|
batch_count = gr.Slider(minimum=1, step=1, label='Batch count', value=1, elem_id="txt2img_batch_count") |
|
batch_size = gr.Slider(minimum=1, maximum=8, step=1, label='Batch size', value=1, elem_id="txt2img_batch_size") |
|
|
|
elif category == "override_settings": |
|
with FormRow(elem_id="txt2img_override_settings_row") as row: |
|
override_settings = create_override_settings_dropdown('txt2img', row) |
|
|
|
elif category == "scripts": |
|
with FormGroup(elem_id="txt2img_script_container"): |
|
custom_inputs = modules.scripts.scripts_txt2img.setup_ui() |
|
|
|
else: |
|
modules.scripts.scripts_txt2img.setup_ui_for_section(category) |
|
|
|
hr_resolution_preview_inputs = [enable_hr, width, height, hr_scale, hr_resize_x, hr_resize_y] |
|
|
|
for component in hr_resolution_preview_inputs: |
|
event = component.release if isinstance(component, gr.Slider) else component.change |
|
|
|
event( |
|
fn=calc_resolution_hires, |
|
inputs=hr_resolution_preview_inputs, |
|
outputs=[hr_final_resolution], |
|
show_progress=False, |
|
) |
|
event( |
|
None, |
|
_js="onCalcResolutionHires", |
|
inputs=hr_resolution_preview_inputs, |
|
outputs=[], |
|
show_progress=False, |
|
) |
|
|
|
txt2img_gallery, generation_info, html_info, html_log = create_output_panel("txt2img", opts.outdir_txt2img_samples) |
|
|
|
connect_reuse_seed(seed, reuse_seed, generation_info, dummy_component, is_subseed=False) |
|
connect_reuse_seed(subseed, reuse_subseed, generation_info, dummy_component, is_subseed=True) |
|
|
|
txt2img_args = dict( |
|
fn=wrap_gradio_gpu_call(modules.txt2img.txt2img, extra_outputs=[None, '', '']), |
|
_js="submit", |
|
inputs=[ |
|
dummy_component, |
|
txt2img_prompt, |
|
txt2img_negative_prompt, |
|
txt2img_prompt_styles, |
|
steps, |
|
sampler_index, |
|
restore_faces, |
|
tiling, |
|
batch_count, |
|
batch_size, |
|
cfg_scale, |
|
seed, |
|
subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox, |
|
height, |
|
width, |
|
enable_hr, |
|
denoising_strength, |
|
hr_scale, |
|
hr_upscaler, |
|
hr_second_pass_steps, |
|
hr_resize_x, |
|
hr_resize_y, |
|
hr_sampler_index, |
|
hr_prompt, |
|
hr_negative_prompt, |
|
override_settings, |
|
|
|
] + custom_inputs, |
|
|
|
outputs=[ |
|
txt2img_gallery, |
|
generation_info, |
|
html_info, |
|
html_log, |
|
], |
|
show_progress=False, |
|
) |
|
|
|
txt2img_prompt.submit(**txt2img_args) |
|
submit.click(**txt2img_args) |
|
|
|
res_switch_btn.click(fn=None, _js="function(){switchWidthHeight('txt2img')}", inputs=None, outputs=None, show_progress=False) |
|
|
|
restore_progress_button.click( |
|
fn=progress.restore_progress, |
|
_js="restoreProgressTxt2img", |
|
inputs=[dummy_component], |
|
outputs=[ |
|
txt2img_gallery, |
|
generation_info, |
|
html_info, |
|
html_log, |
|
], |
|
show_progress=False, |
|
) |
|
|
|
txt_prompt_img.change( |
|
fn=modules.images.image_data, |
|
inputs=[ |
|
txt_prompt_img |
|
], |
|
outputs=[ |
|
txt2img_prompt, |
|
txt_prompt_img |
|
], |
|
show_progress=False, |
|
) |
|
|
|
enable_hr.change( |
|
fn=lambda x: gr_show(x), |
|
inputs=[enable_hr], |
|
outputs=[hr_options], |
|
show_progress = False, |
|
) |
|
|
|
txt2img_paste_fields = [ |
|
(txt2img_prompt, "Prompt"), |
|
(txt2img_negative_prompt, "Negative prompt"), |
|
(steps, "Steps"), |
|
(sampler_index, "Sampler"), |
|
(restore_faces, "Face restoration"), |
|
(cfg_scale, "CFG scale"), |
|
(seed, "Seed"), |
|
(width, "Size-1"), |
|
(height, "Size-2"), |
|
(batch_size, "Batch size"), |
|
(subseed, "Variation seed"), |
|
(subseed_strength, "Variation seed strength"), |
|
(seed_resize_from_w, "Seed resize from-1"), |
|
(seed_resize_from_h, "Seed resize from-2"), |
|
(txt2img_prompt_styles, lambda d: d["Styles array"] if isinstance(d.get("Styles array"), list) else gr.update()), |
|
(denoising_strength, "Denoising strength"), |
|
(enable_hr, lambda d: "Denoising strength" in d), |
|
(hr_options, lambda d: gr.Row.update(visible="Denoising strength" in d)), |
|
(hr_scale, "Hires upscale"), |
|
(hr_upscaler, "Hires upscaler"), |
|
(hr_second_pass_steps, "Hires steps"), |
|
(hr_resize_x, "Hires resize-1"), |
|
(hr_resize_y, "Hires resize-2"), |
|
(hr_sampler_index, "Hires sampler"), |
|
(hr_sampler_container, lambda d: gr.update(visible=True) if d.get("Hires sampler", "Use same sampler") != "Use same sampler" else gr.update()), |
|
(hr_prompt, "Hires prompt"), |
|
(hr_negative_prompt, "Hires negative prompt"), |
|
(hr_prompts_container, lambda d: gr.update(visible=True) if d.get("Hires prompt", "") != "" or d.get("Hires negative prompt", "") != "" else gr.update()), |
|
*modules.scripts.scripts_txt2img.infotext_fields |
|
] |
|
parameters_copypaste.add_paste_fields("txt2img", None, txt2img_paste_fields, override_settings) |
|
parameters_copypaste.register_paste_params_button(parameters_copypaste.ParamBinding( |
|
paste_button=txt2img_paste, tabname="txt2img", source_text_component=txt2img_prompt, source_image_component=None, |
|
)) |
|
|
|
txt2img_preview_params = [ |
|
txt2img_prompt, |
|
txt2img_negative_prompt, |
|
steps, |
|
sampler_index, |
|
cfg_scale, |
|
seed, |
|
width, |
|
height, |
|
] |
|
|
|
token_button.click(fn=wrap_queued_call(update_token_counter), inputs=[txt2img_prompt, steps], outputs=[token_counter]) |
|
negative_token_button.click(fn=wrap_queued_call(update_token_counter), inputs=[txt2img_negative_prompt, steps], outputs=[negative_token_counter]) |
|
|
|
ui_extra_networks.setup_ui(extra_networks_ui, txt2img_gallery) |
|
|
|
modules.scripts.scripts_current = modules.scripts.scripts_img2img |
|
modules.scripts.scripts_img2img.initialize_scripts(is_img2img=True) |
|
|
|
with gr.Blocks(analytics_enabled=False) as img2img_interface: |
|
img2img_prompt, img2img_prompt_styles, img2img_negative_prompt, submit, img2img_interrogate, img2img_deepbooru, img2img_prompt_style_apply, img2img_save_style, img2img_paste, extra_networks_button, token_counter, token_button, negative_token_counter, negative_token_button, restore_progress_button = create_toprow(is_img2img=True) |
|
|
|
img2img_prompt_img = gr.File(label="", elem_id="img2img_prompt_image", file_count="single", type="binary", visible=False) |
|
|
|
with FormRow(variant='compact', elem_id="img2img_extra_networks", visible=False) as extra_networks: |
|
from modules import ui_extra_networks |
|
extra_networks_ui_img2img = ui_extra_networks.create_ui(extra_networks, extra_networks_button, 'img2img') |
|
|
|
with FormRow().style(equal_height=False): |
|
with gr.Column(variant='compact', elem_id="img2img_settings"): |
|
copy_image_buttons = [] |
|
copy_image_destinations = {} |
|
|
|
def add_copy_image_controls(tab_name, elem): |
|
with gr.Row(variant="compact", elem_id=f"img2img_copy_to_{tab_name}"): |
|
gr.HTML("Copy image to: ", elem_id=f"img2img_label_copy_to_{tab_name}") |
|
|
|
for title, name in zip(['img2img', 'sketch', 'inpaint', 'inpaint sketch'], ['img2img', 'sketch', 'inpaint', 'inpaint_sketch']): |
|
if name == tab_name: |
|
gr.Button(title, interactive=False) |
|
copy_image_destinations[name] = elem |
|
continue |
|
|
|
button = gr.Button(title) |
|
copy_image_buttons.append((button, name, elem)) |
|
|
|
with gr.Tabs(elem_id="mode_img2img"): |
|
img2img_selected_tab = gr.State(0) |
|
|
|
with gr.TabItem('img2img', id='img2img', elem_id="img2img_img2img_tab") as tab_img2img: |
|
init_img = gr.Image(label="Image for img2img", elem_id="img2img_image", show_label=False, source="upload", interactive=True, type="pil", tool="editor", image_mode="RGBA").style(height=opts.img2img_editor_height) |
|
add_copy_image_controls('img2img', init_img) |
|
|
|
with gr.TabItem('Sketch', id='img2img_sketch', elem_id="img2img_img2img_sketch_tab") as tab_sketch: |
|
sketch = gr.Image(label="Image for img2img", elem_id="img2img_sketch", show_label=False, source="upload", interactive=True, type="pil", tool="color-sketch", image_mode="RGBA").style(height=opts.img2img_editor_height) |
|
add_copy_image_controls('sketch', sketch) |
|
|
|
with gr.TabItem('Inpaint', id='inpaint', elem_id="img2img_inpaint_tab") as tab_inpaint: |
|
init_img_with_mask = gr.Image(label="Image for inpainting with mask", show_label=False, elem_id="img2maskimg", source="upload", interactive=True, type="pil", tool="sketch", image_mode="RGBA").style(height=opts.img2img_editor_height) |
|
add_copy_image_controls('inpaint', init_img_with_mask) |
|
|
|
with gr.TabItem('Inpaint sketch', id='inpaint_sketch', elem_id="img2img_inpaint_sketch_tab") as tab_inpaint_color: |
|
inpaint_color_sketch = gr.Image(label="Color sketch inpainting", show_label=False, elem_id="inpaint_sketch", source="upload", interactive=True, type="pil", tool="color-sketch", image_mode="RGBA").style(height=opts.img2img_editor_height) |
|
inpaint_color_sketch_orig = gr.State(None) |
|
add_copy_image_controls('inpaint_sketch', inpaint_color_sketch) |
|
|
|
def update_orig(image, state): |
|
if image is not None: |
|
same_size = state is not None and state.size == image.size |
|
has_exact_match = np.any(np.all(np.array(image) == np.array(state), axis=-1)) |
|
edited = same_size and has_exact_match |
|
return image if not edited or state is None else state |
|
|
|
inpaint_color_sketch.change(update_orig, [inpaint_color_sketch, inpaint_color_sketch_orig], inpaint_color_sketch_orig) |
|
|
|
with gr.TabItem('Inpaint upload', id='inpaint_upload', elem_id="img2img_inpaint_upload_tab") as tab_inpaint_upload: |
|
init_img_inpaint = gr.Image(label="Image for img2img", show_label=False, source="upload", interactive=True, type="pil", elem_id="img_inpaint_base") |
|
init_mask_inpaint = gr.Image(label="Mask", source="upload", interactive=True, type="pil", elem_id="img_inpaint_mask") |
|
|
|
with gr.TabItem('Batch', id='batch', elem_id="img2img_batch_tab") as tab_batch: |
|
hidden = '<br>Disabled when launched with --hide-ui-dir-config.' if shared.cmd_opts.hide_ui_dir_config else '' |
|
gr.HTML( |
|
"<p style='padding-bottom: 1em;' class=\"text-gray-500\">Process images in a directory on the same machine where the server is running." + |
|
"<br>Use an empty output directory to save pictures normally instead of writing to the output directory." + |
|
f"<br>Add inpaint batch mask directory to enable inpaint batch processing." |
|
f"{hidden}</p>" |
|
) |
|
img2img_batch_input_dir = gr.Textbox(label="Input directory", **shared.hide_dirs, elem_id="img2img_batch_input_dir") |
|
img2img_batch_output_dir = gr.Textbox(label="Output directory", **shared.hide_dirs, elem_id="img2img_batch_output_dir") |
|
img2img_batch_inpaint_mask_dir = gr.Textbox(label="Inpaint batch mask directory (required for inpaint batch processing only)", **shared.hide_dirs, elem_id="img2img_batch_inpaint_mask_dir") |
|
with gr.Accordion("PNG info", open=False): |
|
img2img_batch_use_png_info = gr.Checkbox(label="Append png info to prompts", **shared.hide_dirs, elem_id="img2img_batch_use_png_info") |
|
img2img_batch_png_info_dir = gr.Textbox(label="PNG info directory", **shared.hide_dirs, placeholder="Leave empty to use input directory", elem_id="img2img_batch_png_info_dir") |
|
img2img_batch_png_info_props = gr.CheckboxGroup(["Prompt", "Negative prompt", "Seed", "CFG scale", "Sampler", "Steps"], label="Parameters to take from png info", info="Prompts from png info will be appended to prompts set in ui.") |
|
|
|
img2img_tabs = [tab_img2img, tab_sketch, tab_inpaint, tab_inpaint_color, tab_inpaint_upload, tab_batch] |
|
|
|
for i, tab in enumerate(img2img_tabs): |
|
tab.select(fn=lambda tabnum=i: tabnum, inputs=[], outputs=[img2img_selected_tab]) |
|
|
|
def copy_image(img): |
|
if isinstance(img, dict) and 'image' in img: |
|
return img['image'] |
|
|
|
return img |
|
|
|
for button, name, elem in copy_image_buttons: |
|
button.click( |
|
fn=copy_image, |
|
inputs=[elem], |
|
outputs=[copy_image_destinations[name]], |
|
) |
|
button.click( |
|
fn=lambda: None, |
|
_js=f"switch_to_{name.replace(' ', '_')}", |
|
inputs=[], |
|
outputs=[], |
|
) |
|
|
|
with FormRow(): |
|
resize_mode = gr.Radio(label="Resize mode", elem_id="resize_mode", choices=["Just resize", "Crop and resize", "Resize and fill", "Just resize (latent upscale)"], type="index", value="Just resize") |
|
|
|
modules.scripts.scripts_img2img.prepare_ui() |
|
|
|
for category in ordered_ui_categories(): |
|
if category == "sampler": |
|
steps, sampler_index = create_sampler_and_steps_selection(samplers_for_img2img, "img2img") |
|
|
|
elif category == "dimensions": |
|
with FormRow(): |
|
with gr.Column(elem_id="img2img_column_size", scale=4): |
|
selected_scale_tab = gr.State(value=0) |
|
|
|
with gr.Tabs(): |
|
with gr.Tab(label="Resize to", elem_id="img2img_tab_resize_to") as tab_scale_to: |
|
with FormRow(): |
|
with gr.Column(elem_id="img2img_column_size", scale=4): |
|
width = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512, elem_id="img2img_width") |
|
height = gr.Slider(minimum=64, maximum=2048, step=8, label="Height", value=512, elem_id="img2img_height") |
|
with gr.Column(elem_id="img2img_dimensions_row", scale=1, elem_classes="dimensions-tools"): |
|
res_switch_btn = ToolButton(value=switch_values_symbol, elem_id="img2img_res_switch_btn") |
|
detect_image_size_btn = ToolButton(value=detect_image_size_symbol, elem_id="img2img_detect_image_size_btn") |
|
|
|
with gr.Tab(label="Resize by", elem_id="img2img_tab_resize_by") as tab_scale_by: |
|
scale_by = gr.Slider(minimum=0.05, maximum=4.0, step=0.05, label="Scale", value=1.0, elem_id="img2img_scale") |
|
|
|
with FormRow(): |
|
scale_by_html = FormHTML(resize_from_to_html(0, 0, 0.0), elem_id="img2img_scale_resolution_preview") |
|
gr.Slider(label="Unused", elem_id="img2img_unused_scale_by_slider") |
|
button_update_resize_to = gr.Button(visible=False, elem_id="img2img_update_resize_to") |
|
|
|
on_change_args = dict( |
|
fn=resize_from_to_html, |
|
_js="currentImg2imgSourceResolution", |
|
inputs=[dummy_component, dummy_component, scale_by], |
|
outputs=scale_by_html, |
|
show_progress=False, |
|
) |
|
|
|
scale_by.release(**on_change_args) |
|
button_update_resize_to.click(**on_change_args) |
|
|
|
|
|
|
|
|
|
for component in [init_img, sketch]: |
|
component.change(fn=lambda: None, _js="updateImg2imgResizeToTextAfterChangingImage", inputs=[], outputs=[], show_progress=False) |
|
|
|
tab_scale_to.select(fn=lambda: 0, inputs=[], outputs=[selected_scale_tab]) |
|
tab_scale_by.select(fn=lambda: 1, inputs=[], outputs=[selected_scale_tab]) |
|
|
|
if opts.dimensions_and_batch_together: |
|
with gr.Column(elem_id="img2img_column_batch"): |
|
batch_count = gr.Slider(minimum=1, step=1, label='Batch count', value=1, elem_id="img2img_batch_count") |
|
batch_size = gr.Slider(minimum=1, maximum=8, step=1, label='Batch size', value=1, elem_id="img2img_batch_size") |
|
|
|
elif category == "cfg": |
|
with FormGroup(): |
|
with FormRow(): |
|
cfg_scale = gr.Slider(minimum=1.0, maximum=30.0, step=0.5, label='CFG Scale', value=7.0, elem_id="img2img_cfg_scale") |
|
image_cfg_scale = gr.Slider(minimum=0, maximum=3.0, step=0.05, label='Image CFG Scale', value=1.5, elem_id="img2img_image_cfg_scale", visible=False) |
|
denoising_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising strength', value=0.75, elem_id="img2img_denoising_strength") |
|
|
|
elif category == "seed": |
|
seed, reuse_seed, subseed, reuse_subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox = create_seed_inputs('img2img') |
|
|
|
elif category == "checkboxes": |
|
with FormRow(elem_classes="checkboxes-row", variant="compact"): |
|
restore_faces = gr.Checkbox(label='Restore faces', value=False, visible=len(shared.face_restorers) > 1, elem_id="img2img_restore_faces") |
|
tiling = gr.Checkbox(label='Tiling', value=False, elem_id="img2img_tiling") |
|
|
|
elif category == "batch": |
|
if not opts.dimensions_and_batch_together: |
|
with FormRow(elem_id="img2img_column_batch"): |
|
batch_count = gr.Slider(minimum=1, step=1, label='Batch count', value=1, elem_id="img2img_batch_count") |
|
batch_size = gr.Slider(minimum=1, maximum=8, step=1, label='Batch size', value=1, elem_id="img2img_batch_size") |
|
|
|
elif category == "override_settings": |
|
with FormRow(elem_id="img2img_override_settings_row") as row: |
|
override_settings = create_override_settings_dropdown('img2img', row) |
|
|
|
elif category == "scripts": |
|
with FormGroup(elem_id="img2img_script_container"): |
|
custom_inputs = modules.scripts.scripts_img2img.setup_ui() |
|
|
|
elif category == "inpaint": |
|
with FormGroup(elem_id="inpaint_controls", visible=False) as inpaint_controls: |
|
with FormRow(): |
|
mask_blur = gr.Slider(label='Mask blur', minimum=0, maximum=64, step=1, value=4, elem_id="img2img_mask_blur") |
|
mask_alpha = gr.Slider(label="Mask transparency", visible=False, elem_id="img2img_mask_alpha") |
|
|
|
with FormRow(): |
|
inpainting_mask_invert = gr.Radio(label='Mask mode', choices=['Inpaint masked', 'Inpaint not masked'], value='Inpaint masked', type="index", elem_id="img2img_mask_mode") |
|
|
|
with FormRow(): |
|
inpainting_fill = gr.Radio(label='Masked content', choices=['fill', 'original', 'latent noise', 'latent nothing'], value='original', type="index", elem_id="img2img_inpainting_fill") |
|
|
|
with FormRow(): |
|
with gr.Column(): |
|
inpaint_full_res = gr.Radio(label="Inpaint area", choices=["Whole picture", "Only masked"], type="index", value="Whole picture", elem_id="img2img_inpaint_full_res") |
|
|
|
with gr.Column(scale=4): |
|
inpaint_full_res_padding = gr.Slider(label='Only masked padding, pixels', minimum=0, maximum=256, step=4, value=32, elem_id="img2img_inpaint_full_res_padding") |
|
|
|
def select_img2img_tab(tab): |
|
return gr.update(visible=tab in [2, 3, 4]), gr.update(visible=tab == 3), |
|
|
|
for i, elem in enumerate(img2img_tabs): |
|
elem.select( |
|
fn=lambda tab=i: select_img2img_tab(tab), |
|
inputs=[], |
|
outputs=[inpaint_controls, mask_alpha], |
|
) |
|
else: |
|
modules.scripts.scripts_img2img.setup_ui_for_section(category) |
|
|
|
img2img_gallery, generation_info, html_info, html_log = create_output_panel("img2img", opts.outdir_img2img_samples) |
|
|
|
connect_reuse_seed(seed, reuse_seed, generation_info, dummy_component, is_subseed=False) |
|
connect_reuse_seed(subseed, reuse_subseed, generation_info, dummy_component, is_subseed=True) |
|
|
|
img2img_prompt_img.change( |
|
fn=modules.images.image_data, |
|
inputs=[ |
|
img2img_prompt_img |
|
], |
|
outputs=[ |
|
img2img_prompt, |
|
img2img_prompt_img |
|
], |
|
show_progress=False, |
|
) |
|
|
|
img2img_args = dict( |
|
fn=wrap_gradio_gpu_call(modules.img2img.img2img, extra_outputs=[None, '', '']), |
|
_js="submit_img2img", |
|
inputs=[ |
|
dummy_component, |
|
dummy_component, |
|
img2img_prompt, |
|
img2img_negative_prompt, |
|
img2img_prompt_styles, |
|
init_img, |
|
sketch, |
|
init_img_with_mask, |
|
inpaint_color_sketch, |
|
inpaint_color_sketch_orig, |
|
init_img_inpaint, |
|
init_mask_inpaint, |
|
steps, |
|
sampler_index, |
|
mask_blur, |
|
mask_alpha, |
|
inpainting_fill, |
|
restore_faces, |
|
tiling, |
|
batch_count, |
|
batch_size, |
|
cfg_scale, |
|
image_cfg_scale, |
|
denoising_strength, |
|
seed, |
|
subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox, |
|
selected_scale_tab, |
|
height, |
|
width, |
|
scale_by, |
|
resize_mode, |
|
inpaint_full_res, |
|
inpaint_full_res_padding, |
|
inpainting_mask_invert, |
|
img2img_batch_input_dir, |
|
img2img_batch_output_dir, |
|
img2img_batch_inpaint_mask_dir, |
|
override_settings, |
|
img2img_batch_use_png_info, |
|
img2img_batch_png_info_props, |
|
img2img_batch_png_info_dir, |
|
] + custom_inputs, |
|
outputs=[ |
|
img2img_gallery, |
|
generation_info, |
|
html_info, |
|
html_log, |
|
], |
|
show_progress=False, |
|
) |
|
|
|
interrogate_args = dict( |
|
_js="get_img2img_tab_index", |
|
inputs=[ |
|
dummy_component, |
|
img2img_batch_input_dir, |
|
img2img_batch_output_dir, |
|
init_img, |
|
sketch, |
|
init_img_with_mask, |
|
inpaint_color_sketch, |
|
init_img_inpaint, |
|
], |
|
outputs=[img2img_prompt, dummy_component], |
|
) |
|
|
|
img2img_prompt.submit(**img2img_args) |
|
submit.click(**img2img_args) |
|
|
|
res_switch_btn.click(fn=None, _js="function(){switchWidthHeight('img2img')}", inputs=None, outputs=None, show_progress=False) |
|
|
|
detect_image_size_btn.click( |
|
fn=lambda w, h, _: (w or gr.update(), h or gr.update()), |
|
_js="currentImg2imgSourceResolution", |
|
inputs=[dummy_component, dummy_component, dummy_component], |
|
outputs=[width, height], |
|
show_progress=False, |
|
) |
|
|
|
restore_progress_button.click( |
|
fn=progress.restore_progress, |
|
_js="restoreProgressImg2img", |
|
inputs=[dummy_component], |
|
outputs=[ |
|
img2img_gallery, |
|
generation_info, |
|
html_info, |
|
html_log, |
|
], |
|
show_progress=False, |
|
) |
|
|
|
img2img_interrogate.click( |
|
fn=lambda *args: process_interrogate(interrogate, *args), |
|
**interrogate_args, |
|
) |
|
|
|
img2img_deepbooru.click( |
|
fn=lambda *args: process_interrogate(interrogate_deepbooru, *args), |
|
**interrogate_args, |
|
) |
|
|
|
prompts = [(txt2img_prompt, txt2img_negative_prompt), (img2img_prompt, img2img_negative_prompt)] |
|
style_dropdowns = [txt2img_prompt_styles, img2img_prompt_styles] |
|
style_js_funcs = ["update_txt2img_tokens", "update_img2img_tokens"] |
|
|
|
for button, (prompt, negative_prompt) in zip([txt2img_save_style, img2img_save_style], prompts): |
|
button.click( |
|
fn=add_style, |
|
_js="ask_for_style_name", |
|
|
|
|
|
inputs=[dummy_component, prompt, negative_prompt], |
|
outputs=[txt2img_prompt_styles, img2img_prompt_styles], |
|
) |
|
|
|
for button, (prompt, negative_prompt), styles, js_func in zip([txt2img_prompt_style_apply, img2img_prompt_style_apply], prompts, style_dropdowns, style_js_funcs): |
|
button.click( |
|
fn=apply_styles, |
|
_js=js_func, |
|
inputs=[prompt, negative_prompt, styles], |
|
outputs=[prompt, negative_prompt, styles], |
|
) |
|
|
|
token_button.click(fn=update_token_counter, inputs=[img2img_prompt, steps], outputs=[token_counter]) |
|
negative_token_button.click(fn=wrap_queued_call(update_token_counter), inputs=[img2img_negative_prompt, steps], outputs=[negative_token_counter]) |
|
|
|
ui_extra_networks.setup_ui(extra_networks_ui_img2img, img2img_gallery) |
|
|
|
img2img_paste_fields = [ |
|
(img2img_prompt, "Prompt"), |
|
(img2img_negative_prompt, "Negative prompt"), |
|
(steps, "Steps"), |
|
(sampler_index, "Sampler"), |
|
(restore_faces, "Face restoration"), |
|
(cfg_scale, "CFG scale"), |
|
(image_cfg_scale, "Image CFG scale"), |
|
(seed, "Seed"), |
|
(width, "Size-1"), |
|
(height, "Size-2"), |
|
(batch_size, "Batch size"), |
|
(subseed, "Variation seed"), |
|
(subseed_strength, "Variation seed strength"), |
|
(seed_resize_from_w, "Seed resize from-1"), |
|
(seed_resize_from_h, "Seed resize from-2"), |
|
(img2img_prompt_styles, lambda d: d["Styles array"] if isinstance(d.get("Styles array"), list) else gr.update()), |
|
(denoising_strength, "Denoising strength"), |
|
(mask_blur, "Mask blur"), |
|
*modules.scripts.scripts_img2img.infotext_fields |
|
] |
|
parameters_copypaste.add_paste_fields("img2img", init_img, img2img_paste_fields, override_settings) |
|
parameters_copypaste.add_paste_fields("inpaint", init_img_with_mask, img2img_paste_fields, override_settings) |
|
parameters_copypaste.register_paste_params_button(parameters_copypaste.ParamBinding( |
|
paste_button=img2img_paste, tabname="img2img", source_text_component=img2img_prompt, source_image_component=None, |
|
)) |
|
|
|
modules.scripts.scripts_current = None |
|
|
|
with gr.Blocks(analytics_enabled=False) as extras_interface: |
|
ui_postprocessing.create_ui() |
|
|
|
with gr.Blocks(analytics_enabled=False) as pnginfo_interface: |
|
with gr.Row().style(equal_height=False): |
|
with gr.Column(variant='panel'): |
|
image = gr.Image(elem_id="pnginfo_image", label="Source", source="upload", interactive=True, type="pil") |
|
|
|
with gr.Column(variant='panel'): |
|
html = gr.HTML() |
|
generation_info = gr.Textbox(visible=False, elem_id="pnginfo_generation_info") |
|
html2 = gr.HTML() |
|
with gr.Row(): |
|
buttons = parameters_copypaste.create_buttons(["txt2img", "img2img", "inpaint", "extras"]) |
|
|
|
for tabname, button in buttons.items(): |
|
parameters_copypaste.register_paste_params_button(parameters_copypaste.ParamBinding( |
|
paste_button=button, tabname=tabname, source_text_component=generation_info, source_image_component=image, |
|
)) |
|
|
|
image.change( |
|
fn=wrap_gradio_call(modules.extras.run_pnginfo), |
|
inputs=[image], |
|
outputs=[html, generation_info, html2], |
|
) |
|
|
|
def update_interp_description(value): |
|
interp_description_css = "<p style='margin-bottom: 2.5em'>{}</p>" |
|
interp_descriptions = { |
|
"No interpolation": interp_description_css.format("No interpolation will be used. Requires one model; A. Allows for format conversion and VAE baking."), |
|
"Weighted sum": interp_description_css.format("A weighted sum will be used for interpolation. Requires two models; A and B. The result is calculated as A * (1 - M) + B * M"), |
|
"Add difference": interp_description_css.format("The difference between the last two models will be added to the first. Requires three models; A, B and C. The result is calculated as A + (B - C) * M") |
|
} |
|
return interp_descriptions[value] |
|
|
|
with gr.Blocks(analytics_enabled=False) as modelmerger_interface: |
|
with gr.Row().style(equal_height=False): |
|
with gr.Column(variant='compact'): |
|
interp_description = gr.HTML(value=update_interp_description("Weighted sum"), elem_id="modelmerger_interp_description") |
|
|
|
with FormRow(elem_id="modelmerger_models"): |
|
primary_model_name = gr.Dropdown(modules.sd_models.checkpoint_tiles(), elem_id="modelmerger_primary_model_name", label="Primary model (A)") |
|
create_refresh_button(primary_model_name, modules.sd_models.list_models, lambda: {"choices": modules.sd_models.checkpoint_tiles()}, "refresh_checkpoint_A") |
|
|
|
secondary_model_name = gr.Dropdown(modules.sd_models.checkpoint_tiles(), elem_id="modelmerger_secondary_model_name", label="Secondary model (B)") |
|
create_refresh_button(secondary_model_name, modules.sd_models.list_models, lambda: {"choices": modules.sd_models.checkpoint_tiles()}, "refresh_checkpoint_B") |
|
|
|
tertiary_model_name = gr.Dropdown(modules.sd_models.checkpoint_tiles(), elem_id="modelmerger_tertiary_model_name", label="Tertiary model (C)") |
|
create_refresh_button(tertiary_model_name, modules.sd_models.list_models, lambda: {"choices": modules.sd_models.checkpoint_tiles()}, "refresh_checkpoint_C") |
|
|
|
custom_name = gr.Textbox(label="Custom Name (Optional)", elem_id="modelmerger_custom_name") |
|
interp_amount = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, label='Multiplier (M) - set to 0 to get model A', value=0.3, elem_id="modelmerger_interp_amount") |
|
interp_method = gr.Radio(choices=["No interpolation", "Weighted sum", "Add difference"], value="Weighted sum", label="Interpolation Method", elem_id="modelmerger_interp_method") |
|
interp_method.change(fn=update_interp_description, inputs=[interp_method], outputs=[interp_description]) |
|
|
|
with FormRow(): |
|
checkpoint_format = gr.Radio(choices=["ckpt", "safetensors"], value="safetensors", label="Checkpoint format", elem_id="modelmerger_checkpoint_format") |
|
save_as_half = gr.Checkbox(value=False, label="Save as float16", elem_id="modelmerger_save_as_half") |
|
save_metadata = gr.Checkbox(value=True, label="Save metadata (.safetensors only)", elem_id="modelmerger_save_metadata") |
|
|
|
with FormRow(): |
|
with gr.Column(): |
|
config_source = gr.Radio(choices=["A, B or C", "B", "C", "Don't"], value="A, B or C", label="Copy config from", type="index", elem_id="modelmerger_config_method") |
|
|
|
with gr.Column(): |
|
with FormRow(): |
|
bake_in_vae = gr.Dropdown(choices=["None"] + list(sd_vae.vae_dict), value="None", label="Bake in VAE", elem_id="modelmerger_bake_in_vae") |
|
create_refresh_button(bake_in_vae, sd_vae.refresh_vae_list, lambda: {"choices": ["None"] + list(sd_vae.vae_dict)}, "modelmerger_refresh_bake_in_vae") |
|
|
|
with FormRow(): |
|
discard_weights = gr.Textbox(value="", label="Discard weights with matching name", elem_id="modelmerger_discard_weights") |
|
|
|
with gr.Row(): |
|
modelmerger_merge = gr.Button(elem_id="modelmerger_merge", value="Merge", variant='primary') |
|
|
|
with gr.Column(variant='compact', elem_id="modelmerger_results_container"): |
|
with gr.Group(elem_id="modelmerger_results_panel"): |
|
modelmerger_result = gr.HTML(elem_id="modelmerger_result", show_label=False) |
|
|
|
with gr.Blocks(analytics_enabled=False) as train_interface: |
|
with gr.Row().style(equal_height=False): |
|
gr.HTML(value="<p style='margin-bottom: 0.7em'>See <b><a href=\"https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Textual-Inversion\">wiki</a></b> for detailed explanation.</p>") |
|
|
|
with gr.Row(variant="compact").style(equal_height=False): |
|
with gr.Tabs(elem_id="train_tabs"): |
|
|
|
with gr.Tab(label="Create embedding", id="create_embedding"): |
|
new_embedding_name = gr.Textbox(label="Name", elem_id="train_new_embedding_name") |
|
initialization_text = gr.Textbox(label="Initialization text", value="*", elem_id="train_initialization_text") |
|
nvpt = gr.Slider(label="Number of vectors per token", minimum=1, maximum=75, step=1, value=1, elem_id="train_nvpt") |
|
overwrite_old_embedding = gr.Checkbox(value=False, label="Overwrite Old Embedding", elem_id="train_overwrite_old_embedding") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=3): |
|
gr.HTML(value="") |
|
|
|
with gr.Column(): |
|
create_embedding = gr.Button(value="Create embedding", variant='primary', elem_id="train_create_embedding") |
|
|
|
with gr.Tab(label="Create hypernetwork", id="create_hypernetwork"): |
|
new_hypernetwork_name = gr.Textbox(label="Name", elem_id="train_new_hypernetwork_name") |
|
new_hypernetwork_sizes = gr.CheckboxGroup(label="Modules", value=["768", "320", "640", "1280"], choices=["768", "1024", "320", "640", "1280"], elem_id="train_new_hypernetwork_sizes") |
|
new_hypernetwork_layer_structure = gr.Textbox("1, 2, 1", label="Enter hypernetwork layer structure", placeholder="1st and last digit must be 1. ex:'1, 2, 1'", elem_id="train_new_hypernetwork_layer_structure") |
|
new_hypernetwork_activation_func = gr.Dropdown(value="linear", label="Select activation function of hypernetwork. Recommended : Swish / Linear(none)", choices=modules.hypernetworks.ui.keys, elem_id="train_new_hypernetwork_activation_func") |
|
new_hypernetwork_initialization_option = gr.Dropdown(value = "Normal", label="Select Layer weights initialization. Recommended: Kaiming for relu-like, Xavier for sigmoid-like, Normal otherwise", choices=["Normal", "KaimingUniform", "KaimingNormal", "XavierUniform", "XavierNormal"], elem_id="train_new_hypernetwork_initialization_option") |
|
new_hypernetwork_add_layer_norm = gr.Checkbox(label="Add layer normalization", elem_id="train_new_hypernetwork_add_layer_norm") |
|
new_hypernetwork_use_dropout = gr.Checkbox(label="Use dropout", elem_id="train_new_hypernetwork_use_dropout") |
|
new_hypernetwork_dropout_structure = gr.Textbox("0, 0, 0", label="Enter hypernetwork Dropout structure (or empty). Recommended : 0~0.35 incrementing sequence: 0, 0.05, 0.15", placeholder="1st and last digit must be 0 and values should be between 0 and 1. ex:'0, 0.01, 0'") |
|
overwrite_old_hypernetwork = gr.Checkbox(value=False, label="Overwrite Old Hypernetwork", elem_id="train_overwrite_old_hypernetwork") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=3): |
|
gr.HTML(value="") |
|
|
|
with gr.Column(): |
|
create_hypernetwork = gr.Button(value="Create hypernetwork", variant='primary', elem_id="train_create_hypernetwork") |
|
|
|
with gr.Tab(label="Preprocess images", id="preprocess_images"): |
|
process_src = gr.Textbox(label='Source directory', elem_id="train_process_src") |
|
process_dst = gr.Textbox(label='Destination directory', elem_id="train_process_dst") |
|
process_width = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512, elem_id="train_process_width") |
|
process_height = gr.Slider(minimum=64, maximum=2048, step=8, label="Height", value=512, elem_id="train_process_height") |
|
preprocess_txt_action = gr.Dropdown(label='Existing Caption txt Action', value="ignore", choices=["ignore", "copy", "prepend", "append"], elem_id="train_preprocess_txt_action") |
|
|
|
with gr.Row(): |
|
process_keep_original_size = gr.Checkbox(label='Keep original size', elem_id="train_process_keep_original_size") |
|
process_flip = gr.Checkbox(label='Create flipped copies', elem_id="train_process_flip") |
|
process_split = gr.Checkbox(label='Split oversized images', elem_id="train_process_split") |
|
process_focal_crop = gr.Checkbox(label='Auto focal point crop', elem_id="train_process_focal_crop") |
|
process_multicrop = gr.Checkbox(label='Auto-sized crop', elem_id="train_process_multicrop") |
|
process_caption = gr.Checkbox(label='Use BLIP for caption', elem_id="train_process_caption") |
|
process_caption_deepbooru = gr.Checkbox(label='Use deepbooru for caption', visible=True, elem_id="train_process_caption_deepbooru") |
|
|
|
with gr.Row(visible=False) as process_split_extra_row: |
|
process_split_threshold = gr.Slider(label='Split image threshold', value=0.5, minimum=0.0, maximum=1.0, step=0.05, elem_id="train_process_split_threshold") |
|
process_overlap_ratio = gr.Slider(label='Split image overlap ratio', value=0.2, minimum=0.0, maximum=0.9, step=0.05, elem_id="train_process_overlap_ratio") |
|
|
|
with gr.Row(visible=False) as process_focal_crop_row: |
|
process_focal_crop_face_weight = gr.Slider(label='Focal point face weight', value=0.9, minimum=0.0, maximum=1.0, step=0.05, elem_id="train_process_focal_crop_face_weight") |
|
process_focal_crop_entropy_weight = gr.Slider(label='Focal point entropy weight', value=0.15, minimum=0.0, maximum=1.0, step=0.05, elem_id="train_process_focal_crop_entropy_weight") |
|
process_focal_crop_edges_weight = gr.Slider(label='Focal point edges weight', value=0.5, minimum=0.0, maximum=1.0, step=0.05, elem_id="train_process_focal_crop_edges_weight") |
|
process_focal_crop_debug = gr.Checkbox(label='Create debug image', elem_id="train_process_focal_crop_debug") |
|
|
|
with gr.Column(visible=False) as process_multicrop_col: |
|
gr.Markdown('Each image is center-cropped with an automatically chosen width and height.') |
|
with gr.Row(): |
|
process_multicrop_mindim = gr.Slider(minimum=64, maximum=2048, step=8, label="Dimension lower bound", value=384, elem_id="train_process_multicrop_mindim") |
|
process_multicrop_maxdim = gr.Slider(minimum=64, maximum=2048, step=8, label="Dimension upper bound", value=768, elem_id="train_process_multicrop_maxdim") |
|
with gr.Row(): |
|
process_multicrop_minarea = gr.Slider(minimum=64*64, maximum=2048*2048, step=1, label="Area lower bound", value=64*64, elem_id="train_process_multicrop_minarea") |
|
process_multicrop_maxarea = gr.Slider(minimum=64*64, maximum=2048*2048, step=1, label="Area upper bound", value=640*640, elem_id="train_process_multicrop_maxarea") |
|
with gr.Row(): |
|
process_multicrop_objective = gr.Radio(["Maximize area", "Minimize error"], value="Maximize area", label="Resizing objective", elem_id="train_process_multicrop_objective") |
|
process_multicrop_threshold = gr.Slider(minimum=0, maximum=1, step=0.01, label="Error threshold", value=0.1, elem_id="train_process_multicrop_threshold") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=3): |
|
gr.HTML(value="") |
|
|
|
with gr.Column(): |
|
with gr.Row(): |
|
interrupt_preprocessing = gr.Button("Interrupt", elem_id="train_interrupt_preprocessing") |
|
run_preprocess = gr.Button(value="Preprocess", variant='primary', elem_id="train_run_preprocess") |
|
|
|
process_split.change( |
|
fn=lambda show: gr_show(show), |
|
inputs=[process_split], |
|
outputs=[process_split_extra_row], |
|
) |
|
|
|
process_focal_crop.change( |
|
fn=lambda show: gr_show(show), |
|
inputs=[process_focal_crop], |
|
outputs=[process_focal_crop_row], |
|
) |
|
|
|
process_multicrop.change( |
|
fn=lambda show: gr_show(show), |
|
inputs=[process_multicrop], |
|
outputs=[process_multicrop_col], |
|
) |
|
|
|
def get_textual_inversion_template_names(): |
|
return sorted(textual_inversion.textual_inversion_templates) |
|
|
|
with gr.Tab(label="Train", id="train"): |
|
gr.HTML(value="<p style='margin-bottom: 0.7em'>Train an embedding or Hypernetwork; you must specify a directory with a set of 1:1 ratio images <a href=\"https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Textual-Inversion\" style=\"font-weight:bold;\">[wiki]</a></p>") |
|
with FormRow(): |
|
train_embedding_name = gr.Dropdown(label='Embedding', elem_id="train_embedding", choices=sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys())) |
|
create_refresh_button(train_embedding_name, sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings, lambda: {"choices": sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys())}, "refresh_train_embedding_name") |
|
|
|
train_hypernetwork_name = gr.Dropdown(label='Hypernetwork', elem_id="train_hypernetwork", choices=sorted(shared.hypernetworks)) |
|
create_refresh_button(train_hypernetwork_name, shared.reload_hypernetworks, lambda: {"choices": sorted(shared.hypernetworks)}, "refresh_train_hypernetwork_name") |
|
|
|
with FormRow(): |
|
embedding_learn_rate = gr.Textbox(label='Embedding Learning rate', placeholder="Embedding Learning rate", value="0.005", elem_id="train_embedding_learn_rate") |
|
hypernetwork_learn_rate = gr.Textbox(label='Hypernetwork Learning rate', placeholder="Hypernetwork Learning rate", value="0.00001", elem_id="train_hypernetwork_learn_rate") |
|
|
|
with FormRow(): |
|
clip_grad_mode = gr.Dropdown(value="disabled", label="Gradient Clipping", choices=["disabled", "value", "norm"]) |
|
clip_grad_value = gr.Textbox(placeholder="Gradient clip value", value="0.1", show_label=False) |
|
|
|
with FormRow(): |
|
batch_size = gr.Number(label='Batch size', value=1, precision=0, elem_id="train_batch_size") |
|
gradient_step = gr.Number(label='Gradient accumulation steps', value=1, precision=0, elem_id="train_gradient_step") |
|
|
|
dataset_directory = gr.Textbox(label='Dataset directory', placeholder="Path to directory with input images", elem_id="train_dataset_directory") |
|
log_directory = gr.Textbox(label='Log directory', placeholder="Path to directory where to write outputs", value="textual_inversion", elem_id="train_log_directory") |
|
|
|
with FormRow(): |
|
template_file = gr.Dropdown(label='Prompt template', value="style_filewords.txt", elem_id="train_template_file", choices=get_textual_inversion_template_names()) |
|
create_refresh_button(template_file, textual_inversion.list_textual_inversion_templates, lambda: {"choices": get_textual_inversion_template_names()}, "refrsh_train_template_file") |
|
|
|
training_width = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512, elem_id="train_training_width") |
|
training_height = gr.Slider(minimum=64, maximum=2048, step=8, label="Height", value=512, elem_id="train_training_height") |
|
varsize = gr.Checkbox(label="Do not resize images", value=False, elem_id="train_varsize") |
|
steps = gr.Number(label='Max steps', value=100000, precision=0, elem_id="train_steps") |
|
|
|
with FormRow(): |
|
create_image_every = gr.Number(label='Save an image to log directory every N steps, 0 to disable', value=500, precision=0, elem_id="train_create_image_every") |
|
save_embedding_every = gr.Number(label='Save a copy of embedding to log directory every N steps, 0 to disable', value=500, precision=0, elem_id="train_save_embedding_every") |
|
|
|
use_weight = gr.Checkbox(label="Use PNG alpha channel as loss weight", value=False, elem_id="use_weight") |
|
|
|
save_image_with_stored_embedding = gr.Checkbox(label='Save images with embedding in PNG chunks', value=True, elem_id="train_save_image_with_stored_embedding") |
|
preview_from_txt2img = gr.Checkbox(label='Read parameters (prompt, etc...) from txt2img tab when making previews', value=False, elem_id="train_preview_from_txt2img") |
|
|
|
shuffle_tags = gr.Checkbox(label="Shuffle tags by ',' when creating prompts.", value=False, elem_id="train_shuffle_tags") |
|
tag_drop_out = gr.Slider(minimum=0, maximum=1, step=0.1, label="Drop out tags when creating prompts.", value=0, elem_id="train_tag_drop_out") |
|
|
|
latent_sampling_method = gr.Radio(label='Choose latent sampling method', value="once", choices=['once', 'deterministic', 'random'], elem_id="train_latent_sampling_method") |
|
|
|
with gr.Row(): |
|
train_embedding = gr.Button(value="Train Embedding", variant='primary', elem_id="train_train_embedding") |
|
interrupt_training = gr.Button(value="Interrupt", elem_id="train_interrupt_training") |
|
train_hypernetwork = gr.Button(value="Train Hypernetwork", variant='primary', elem_id="train_train_hypernetwork") |
|
|
|
params = script_callbacks.UiTrainTabParams(txt2img_preview_params) |
|
|
|
script_callbacks.ui_train_tabs_callback(params) |
|
|
|
with gr.Column(elem_id='ti_gallery_container'): |
|
ti_output = gr.Text(elem_id="ti_output", value="", show_label=False) |
|
gr.Gallery(label='Output', show_label=False, elem_id='ti_gallery').style(columns=4) |
|
gr.HTML(elem_id="ti_progress", value="") |
|
ti_outcome = gr.HTML(elem_id="ti_error", value="") |
|
|
|
create_embedding.click( |
|
fn=modules.textual_inversion.ui.create_embedding, |
|
inputs=[ |
|
new_embedding_name, |
|
initialization_text, |
|
nvpt, |
|
overwrite_old_embedding, |
|
], |
|
outputs=[ |
|
train_embedding_name, |
|
ti_output, |
|
ti_outcome, |
|
] |
|
) |
|
|
|
create_hypernetwork.click( |
|
fn=modules.hypernetworks.ui.create_hypernetwork, |
|
inputs=[ |
|
new_hypernetwork_name, |
|
new_hypernetwork_sizes, |
|
overwrite_old_hypernetwork, |
|
new_hypernetwork_layer_structure, |
|
new_hypernetwork_activation_func, |
|
new_hypernetwork_initialization_option, |
|
new_hypernetwork_add_layer_norm, |
|
new_hypernetwork_use_dropout, |
|
new_hypernetwork_dropout_structure |
|
], |
|
outputs=[ |
|
train_hypernetwork_name, |
|
ti_output, |
|
ti_outcome, |
|
] |
|
) |
|
|
|
run_preprocess.click( |
|
fn=wrap_gradio_gpu_call(modules.textual_inversion.ui.preprocess, extra_outputs=[gr.update()]), |
|
_js="start_training_textual_inversion", |
|
inputs=[ |
|
dummy_component, |
|
process_src, |
|
process_dst, |
|
process_width, |
|
process_height, |
|
preprocess_txt_action, |
|
process_keep_original_size, |
|
process_flip, |
|
process_split, |
|
process_caption, |
|
process_caption_deepbooru, |
|
process_split_threshold, |
|
process_overlap_ratio, |
|
process_focal_crop, |
|
process_focal_crop_face_weight, |
|
process_focal_crop_entropy_weight, |
|
process_focal_crop_edges_weight, |
|
process_focal_crop_debug, |
|
process_multicrop, |
|
process_multicrop_mindim, |
|
process_multicrop_maxdim, |
|
process_multicrop_minarea, |
|
process_multicrop_maxarea, |
|
process_multicrop_objective, |
|
process_multicrop_threshold, |
|
], |
|
outputs=[ |
|
ti_output, |
|
ti_outcome, |
|
], |
|
) |
|
|
|
train_embedding.click( |
|
fn=wrap_gradio_gpu_call(modules.textual_inversion.ui.train_embedding, extra_outputs=[gr.update()]), |
|
_js="start_training_textual_inversion", |
|
inputs=[ |
|
dummy_component, |
|
train_embedding_name, |
|
embedding_learn_rate, |
|
batch_size, |
|
gradient_step, |
|
dataset_directory, |
|
log_directory, |
|
training_width, |
|
training_height, |
|
varsize, |
|
steps, |
|
clip_grad_mode, |
|
clip_grad_value, |
|
shuffle_tags, |
|
tag_drop_out, |
|
latent_sampling_method, |
|
use_weight, |
|
create_image_every, |
|
save_embedding_every, |
|
template_file, |
|
save_image_with_stored_embedding, |
|
preview_from_txt2img, |
|
*txt2img_preview_params, |
|
], |
|
outputs=[ |
|
ti_output, |
|
ti_outcome, |
|
] |
|
) |
|
|
|
train_hypernetwork.click( |
|
fn=wrap_gradio_gpu_call(modules.hypernetworks.ui.train_hypernetwork, extra_outputs=[gr.update()]), |
|
_js="start_training_textual_inversion", |
|
inputs=[ |
|
dummy_component, |
|
train_hypernetwork_name, |
|
hypernetwork_learn_rate, |
|
batch_size, |
|
gradient_step, |
|
dataset_directory, |
|
log_directory, |
|
training_width, |
|
training_height, |
|
varsize, |
|
steps, |
|
clip_grad_mode, |
|
clip_grad_value, |
|
shuffle_tags, |
|
tag_drop_out, |
|
latent_sampling_method, |
|
use_weight, |
|
create_image_every, |
|
save_embedding_every, |
|
template_file, |
|
preview_from_txt2img, |
|
*txt2img_preview_params, |
|
], |
|
outputs=[ |
|
ti_output, |
|
ti_outcome, |
|
] |
|
) |
|
|
|
interrupt_training.click( |
|
fn=lambda: shared.state.interrupt(), |
|
inputs=[], |
|
outputs=[], |
|
) |
|
|
|
interrupt_preprocessing.click( |
|
fn=lambda: shared.state.interrupt(), |
|
inputs=[], |
|
outputs=[], |
|
) |
|
|
|
loadsave = ui_loadsave.UiLoadsave(cmd_opts.ui_config_file) |
|
|
|
settings = ui_settings.UiSettings() |
|
settings.create_ui(loadsave, dummy_component) |
|
|
|
interfaces = [ |
|
(txt2img_interface, "txt2img", "txt2img"), |
|
(img2img_interface, "img2img", "img2img"), |
|
(extras_interface, "Extras", "extras"), |
|
(pnginfo_interface, "PNG Info", "pnginfo"), |
|
(modelmerger_interface, "Checkpoint Merger", "modelmerger"), |
|
(train_interface, "Train", "train"), |
|
] |
|
|
|
interfaces += script_callbacks.ui_tabs_callback() |
|
interfaces += [(settings.interface, "Settings", "settings")] |
|
|
|
extensions_interface = ui_extensions.create_ui() |
|
interfaces += [(extensions_interface, "Extensions", "extensions")] |
|
|
|
shared.tab_names = [] |
|
for _interface, label, _ifid in interfaces: |
|
shared.tab_names.append(label) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with gr.Blocks(theme='gradio/base', analytics_enabled=False, title="Stable Diffusion") as demo: |
|
settings.add_quicksettings() |
|
|
|
parameters_copypaste.connect_paste_params_buttons() |
|
|
|
with gr.Tabs(elem_id="tabs") as tabs: |
|
tab_order = {k: i for i, k in enumerate(opts.ui_tab_order)} |
|
sorted_interfaces = sorted(interfaces, key=lambda x: tab_order.get(x[1], 9999)) |
|
|
|
for interface, label, ifid in sorted_interfaces: |
|
if label in shared.opts.hidden_tabs: |
|
continue |
|
with gr.TabItem(label, id=ifid, elem_id=f"tab_{ifid}"): |
|
interface.render() |
|
|
|
for interface, _label, ifid in interfaces: |
|
if ifid in ["extensions", "settings"]: |
|
continue |
|
|
|
loadsave.add_block(interface, ifid) |
|
|
|
loadsave.add_component(f"webui/Tabs@{tabs.elem_id}", tabs) |
|
|
|
loadsave.setup_ui() |
|
|
|
if os.path.exists(os.path.join(script_path, "notification.mp3")): |
|
gr.Audio(interactive=False, value=os.path.join(script_path, "notification.mp3"), elem_id="audio_notification", visible=False) |
|
|
|
footer = shared.html("footer.html") |
|
footer = footer.format(versions=versions_html(), api_docs="/docs" if shared.cmd_opts.api else "https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/API") |
|
gr.HTML(footer, elem_id="footer") |
|
|
|
settings.add_functionality(demo) |
|
|
|
update_image_cfg_scale_visibility = lambda: gr.update(visible=shared.sd_model and shared.sd_model.cond_stage_key == "edit") |
|
settings.text_settings.change(fn=update_image_cfg_scale_visibility, inputs=[], outputs=[image_cfg_scale]) |
|
demo.load(fn=update_image_cfg_scale_visibility, inputs=[], outputs=[image_cfg_scale]) |
|
|
|
def modelmerger(*args): |
|
try: |
|
results = modules.extras.run_modelmerger(*args) |
|
except Exception as e: |
|
errors.report("Error loading/saving model file", exc_info=True) |
|
modules.sd_models.list_models() |
|
return [*[gr.Dropdown.update(choices=modules.sd_models.checkpoint_tiles()) for _ in range(4)], f"Error merging checkpoints: {e}"] |
|
return results |
|
|
|
modelmerger_merge.click(fn=lambda: '', inputs=[], outputs=[modelmerger_result]) |
|
modelmerger_merge.click( |
|
fn=wrap_gradio_gpu_call(modelmerger, extra_outputs=lambda: [gr.update() for _ in range(4)]), |
|
_js='modelmerger', |
|
inputs=[ |
|
dummy_component, |
|
primary_model_name, |
|
secondary_model_name, |
|
tertiary_model_name, |
|
interp_method, |
|
interp_amount, |
|
save_as_half, |
|
custom_name, |
|
checkpoint_format, |
|
config_source, |
|
bake_in_vae, |
|
discard_weights, |
|
save_metadata, |
|
], |
|
outputs=[ |
|
primary_model_name, |
|
secondary_model_name, |
|
tertiary_model_name, |
|
settings.component_dict['sd_model_checkpoint'], |
|
modelmerger_result, |
|
] |
|
) |
|
|
|
loadsave.dump_defaults() |
|
demo.ui_loadsave = loadsave |
|
|
|
|
|
interp_description.value = update_interp_description(interp_method.value) |
|
|
|
return demo |
|
|
|
|
|
def versions_html(): |
|
import torch |
|
import launch |
|
|
|
python_version = ".".join([str(x) for x in sys.version_info[0:3]]) |
|
commit = launch.commit_hash() |
|
tag = launch.git_tag() |
|
|
|
if shared.xformers_available: |
|
import xformers |
|
xformers_version = xformers.__version__ |
|
else: |
|
xformers_version = "N/A" |
|
|
|
return f""" |
|
version: <a href="https://github.com/AUTOMATIC1111/stable-diffusion-webui/commit/{commit}">{tag}</a> |
|
 β’  |
|
python: <span title="{sys.version}">{python_version}</span> |
|
 β’  |
|
torch: {getattr(torch, '__long_version__',torch.__version__)} |
|
 β’  |
|
xformers: {xformers_version} |
|
 β’  |
|
gradio: {gr.__version__} |
|
 β’  |
|
checkpoint: <a id="sd_checkpoint_hash">N/A</a> |
|
""" |
|
|
|
|
|
def setup_ui_api(app): |
|
from pydantic import BaseModel, Field |
|
from typing import List |
|
|
|
class QuicksettingsHint(BaseModel): |
|
name: str = Field(title="Name of the quicksettings field") |
|
label: str = Field(title="Label of the quicksettings field") |
|
|
|
def quicksettings_hint(): |
|
return [QuicksettingsHint(name=k, label=v.label) for k, v in opts.data_labels.items()] |
|
|
|
app.add_api_route("/internal/quicksettings-hint", quicksettings_hint, methods=["GET"], response_model=List[QuicksettingsHint]) |
|
|
|
app.add_api_route("/internal/ping", lambda: {}, methods=["GET"]) |
|
|
|
app.add_api_route("/internal/profile-startup", lambda: timer.startup_record, methods=["GET"]) |
|
|
|
def download_sysinfo(attachment=False): |
|
from fastapi.responses import PlainTextResponse |
|
|
|
text = sysinfo.get() |
|
filename = f"sysinfo-{datetime.datetime.utcnow().strftime('%Y-%m-%d-%H-%M')}.txt" |
|
|
|
return PlainTextResponse(text, headers={'Content-Disposition': f'{"attachment" if attachment else "inline"}; filename="{filename}"'}) |
|
|
|
app.add_api_route("/internal/sysinfo", download_sysinfo, methods=["GET"]) |
|
app.add_api_route("/internal/sysinfo-download", lambda: download_sysinfo(attachment=True), methods=["GET"]) |
|
|
|
|