DiffusionText2WorldGeneration
/
cosmos1
/models
/autoregressive
/nemo
/post_training
/prepare_dataset.py
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: Apache-2.0 | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
from argparse import ArgumentParser | |
from glob import glob | |
import torch | |
from einops import rearrange | |
from huggingface_hub import snapshot_download | |
from nemo.collections.nlp.data.language_modeling.megatron import indexed_dataset | |
from cosmos1.models.autoregressive.nemo.utils import read_input_videos | |
from discrete_video import DiscreteVideoFSQJITTokenizer | |
from .log import log | |
TOKENIZER_COMPRESSION_FACTOR = [8, 16, 16] | |
DATA_RESOLUTION_SUPPORTED = [640, 1024] | |
NUM_CONTEXT_FRAMES = 33 | |
def main(args): | |
if args.encoder_path == "nvidia/Cosmos-1.0-Tokenizer-DV8x16x16": | |
args.encoder_path = os.path.join(snapshot_download(args.encoder_path), "encoder.jit") | |
if args.decoder_path == "nvidia/Cosmos-1.0-Tokenizer-DV8x16x16": | |
args.decoder_path = os.path.join(snapshot_download(args.decoder_path), "decoder.jit") | |
video_tokenizer = DiscreteVideoFSQJITTokenizer( | |
enc_fp=args.encoder_path, | |
dec_fp=args.decoder_path, | |
name="discrete_video_fsq", | |
pixel_chunk_duration=NUM_CONTEXT_FRAMES, | |
).cuda() | |
builders = {} | |
key = "text" | |
builders[key] = indexed_dataset.make_builder( | |
f"{args.output_prefix}.bin", | |
impl="mmap", | |
chunk_size=64, | |
pad_id=0, | |
retrieval_db=None, | |
vocab_size=64000, | |
stride=64, | |
) | |
filepaths_final = glob(f"{args.input_videos_dir}/*.mp4") | |
for filepath in filepaths_final: | |
input_video = read_input_videos(filepath).cuda() | |
batch_size, channels, frames, height, width = input_video.shape | |
latent_shape = ( | |
(frames - 1) // TOKENIZER_COMPRESSION_FACTOR[0] + 1, | |
height // TOKENIZER_COMPRESSION_FACTOR[1], | |
width // TOKENIZER_COMPRESSION_FACTOR[2], | |
) | |
T, H, W = latent_shape | |
video_tokenizer.latent_chunk_duration = T | |
quantized_out, _ = video_tokenizer.encode(input_video, pixel_chunk_duration=None) | |
indices = video_tokenizer.fsq_quantizer.codes_to_indices(quantized_out.permute(0, 2, 3, 4, 1)) | |
indices = rearrange(indices, "B T H W -> (B T H W)").detach().cpu() | |
builders[key].add_item(torch.IntTensor(indices).detach().cpu()) | |
builders[key].end_document() | |
builders[key].finalize( | |
f"{args.output_prefix}.idx", | |
) | |
log.info(f"Stored the .bin and .idx files in {args.output_prefix}") | |
if __name__ == "__main__": | |
parser = ArgumentParser() | |
parser.add_argument("--input_videos_dir", required=True, type=str, help="The path to the input videos") | |
parser.add_argument( | |
"--encoder_path", default="nvidia/Cosmos-1.0-Tokenizer-DV8x16x16", type=str, help="The path to encoder" | |
) | |
parser.add_argument( | |
"--decoder_path", default="nvidia/Cosmos-1.0-Tokenizer-DV8x16x16", type=str, help="The path to the decoder" | |
) | |
parser.add_argument( | |
"--output_prefix", | |
required=True, | |
type=str, | |
help="The directory along with the output file name to write the .idx and .bin files (e.g /path/to/output/sample)", | |
) | |
args = parser.parse_args() | |
with torch.no_grad(): | |
main(args) | |