|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass |
|
from typing import Callable, Dict, Optional, Tuple |
|
|
|
import torch |
|
from torch import Tensor |
|
|
|
from conditioner import BaseVideoCondition |
|
from batch_ops import batch_mul |
|
from res_sampler import COMMON_SOLVER_OPTIONS |
|
from model_t2w import DiffusionT2WModel as VideoDiffusionModel |
|
from lazy_config_init import instantiate as lazy_instantiate |
|
|
|
|
|
@dataclass |
|
class VideoLatentDiffusionDecoderCondition(BaseVideoCondition): |
|
|
|
|
|
latent_condition: Optional[torch.Tensor] = None |
|
latent_condition_sigma: Optional[torch.Tensor] = None |
|
|
|
|
|
class LatentDiffusionDecoderModel(VideoDiffusionModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
""" |
|
latent_corruptor: the corruption module is used to corrupt the latents. It add gaussian noise to the latents. |
|
pixel_corruptor: the corruption module is used to corrupt the pixels. It apply gaussian blur kernel to pixels in a temporal consistent way. |
|
tokenizer_corruptor: the corruption module is used to simulate tokenizer reconstruction errors. |
|
|
|
diffusion decoder noise augmentation pipeline for continuous token condition model: |
|
condition: GT_video [T, H, W] |
|
-> tokenizer_corruptor~(8x8x8) encode -> latent_corruptor -> tokenizer_corruptor~(8x8x8) decode |
|
-> pixel corruptor |
|
-> tokenizer~(1x8x8) encode -> condition [T, H/8, W/8] |
|
GT: GT_video [T, H, W] -> tokenizer~(1x8x8) -> x_t [T, H/8, W/8]. |
|
|
|
diffusion decoder noise augmentation pipeline for discrete token condition model: |
|
condition: GT_video [T, H, W] |
|
-> pixel corruptor |
|
-> discrete tokenizer encode -> condition [T, T/8, H/16, W/16] |
|
GT: GT_video [T, H, W] -> tokenizer~(8x8x8) -> x_t [T, T/8, H/8, W/8]. |
|
|
|
""" |
|
self.latent_corruptor = lazy_instantiate(config.latent_corruptor) |
|
self.pixel_corruptor = lazy_instantiate(config.pixel_corruptor) |
|
self.tokenizer_corruptor = lazy_instantiate(config.tokenizer_corruptor) |
|
|
|
if self.latent_corruptor: |
|
self.latent_corruptor.to(**self.tensor_kwargs) |
|
if self.pixel_corruptor: |
|
self.pixel_corruptor.to(**self.tensor_kwargs) |
|
|
|
if self.tokenizer_corruptor: |
|
if hasattr(self.tokenizer_corruptor, "reset_dtype"): |
|
self.tokenizer_corruptor.reset_dtype() |
|
else: |
|
assert self.pixel_corruptor is not None |
|
|
|
self.diffusion_decoder_cond_sigma_low = config.diffusion_decoder_cond_sigma_low |
|
self.diffusion_decoder_cond_sigma_high = config.diffusion_decoder_cond_sigma_high |
|
self.diffusion_decoder_corrupt_prob = config.diffusion_decoder_corrupt_prob |
|
if hasattr(config, "condition_on_tokenizer_corruptor_token"): |
|
self.condition_on_tokenizer_corruptor_token = config.condition_on_tokenizer_corruptor_token |
|
else: |
|
self.condition_on_tokenizer_corruptor_token = False |
|
|
|
def is_image_batch(self, data_batch: dict[str, Tensor]) -> bool: |
|
"""We hanlde two types of data_batch. One comes from a joint_dataloader where "dataset_name" can be used to differenciate image_batch and video_batch. |
|
Another comes from a dataloader which we by default assumes as video_data for video model training. |
|
""" |
|
is_image = self.input_image_key in data_batch |
|
is_video = self.input_data_key in data_batch |
|
assert ( |
|
is_image != is_video |
|
), "Only one of the input_image_key or input_data_key should be present in the data_batch." |
|
return is_image |
|
|
|
def get_x0_fn_from_batch( |
|
self, |
|
data_batch: Dict, |
|
guidance: float = 1.5, |
|
is_negative_prompt: bool = False, |
|
apply_corruptor: bool = True, |
|
corrupt_sigma: float = 1.5, |
|
preencode_condition: bool = False, |
|
) -> Callable: |
|
""" |
|
Generates a callable function `x0_fn` based on the provided data batch and guidance factor. |
|
|
|
This function first processes the input data batch through a conditioning workflow (`conditioner`) to obtain conditioned and unconditioned states. It then defines a nested function `x0_fn` which applies a denoising operation on an input `noise_x` at a given noise level `sigma` using both the conditioned and unconditioned states. |
|
|
|
Args: |
|
- data_batch (Dict): A batch of data used for conditioning. The format and content of this dictionary should align with the expectations of the `self.conditioner` |
|
- guidance (float, optional): A scalar value that modulates the influence of the conditioned state relative to the unconditioned state in the output. Defaults to 1.5. |
|
- is_negative_prompt (bool): use negative prompt t5 in uncondition if true |
|
|
|
Returns: |
|
- Callable: A function `x0_fn(noise_x, sigma)` that takes two arguments, `noise_x` and `sigma`, and return x0 predictoin |
|
|
|
The returned function is suitable for use in scenarios where a denoised state is required based on both conditioned and unconditioned inputs, with an adjustable level of guidance influence. |
|
""" |
|
input_key = self.input_data_key |
|
|
|
raw_state = data_batch[input_key] |
|
|
|
if self.condition_on_tokenizer_corruptor_token: |
|
if preencode_condition: |
|
latent_condition = raw_state.to(torch.int32).contiguous() |
|
corrupted_pixel = self.tokenizer_corruptor.decode(latent_condition[:, 0]) |
|
else: |
|
corrupted_pixel = ( |
|
self.pixel_corruptor(raw_state) if apply_corruptor and self.pixel_corruptor else raw_state |
|
) |
|
latent_condition = self.tokenizer_corruptor.encode(corrupted_pixel) |
|
latent_condition = latent_condition[1] if isinstance(latent_condition, tuple) else latent_condition |
|
corrupted_pixel = self.tokenizer_corruptor.decode(latent_condition) |
|
latent_condition = latent_condition.unsqueeze(1) |
|
else: |
|
if preencode_condition: |
|
latent_condition = raw_state |
|
corrupted_pixel = self.decode(latent_condition) |
|
else: |
|
corrupted_pixel = ( |
|
self.pixel_corruptor(raw_state) if apply_corruptor and self.pixel_corruptor else raw_state |
|
) |
|
latent_condition = self.encode(corrupted_pixel).contiguous() |
|
|
|
sigma = ( |
|
torch.rand((latent_condition.shape[0],)).to(**self.tensor_kwargs) * corrupt_sigma |
|
) |
|
_, _, _, c_noise_cond = self.scaling(sigma=sigma) |
|
if corrupt_sigma != self.diffusion_decoder_cond_sigma_low and self.diffusion_decoder_corrupt_prob > 0: |
|
noise = batch_mul(sigma, torch.randn_like(latent_condition)) |
|
latent_condition = latent_condition + noise |
|
data_batch["latent_condition_sigma"] = batch_mul(torch.ones_like(latent_condition[:, 0:1, ::]), c_noise_cond) |
|
data_batch["latent_condition"] = latent_condition |
|
if is_negative_prompt: |
|
condition, uncondition = self.conditioner.get_condition_with_negative_prompt(data_batch) |
|
else: |
|
condition, uncondition = self.conditioner.get_condition_uncondition(data_batch) |
|
|
|
def x0_fn(noise_x: torch.Tensor, sigma: torch.Tensor) -> torch.Tensor: |
|
cond_x0 = self.denoise(noise_x, sigma, condition).x0 |
|
uncond_x0 = self.denoise(noise_x, sigma, uncondition).x0 |
|
return cond_x0 + guidance * (cond_x0 - uncond_x0) |
|
|
|
return x0_fn, corrupted_pixel |
|
|
|
def generate_samples_from_batch( |
|
self, |
|
data_batch: Dict, |
|
guidance: float = 1.5, |
|
seed: int = 1, |
|
state_shape: Tuple | None = None, |
|
n_sample: int | None = None, |
|
is_negative_prompt: bool = False, |
|
num_steps: int = 35, |
|
solver_option: COMMON_SOLVER_OPTIONS = "2ab", |
|
sigma_min: float = 0.02, |
|
apply_corruptor: bool = False, |
|
return_recon_x: bool = False, |
|
corrupt_sigma: float = 0.01, |
|
preencode_condition: bool = False, |
|
) -> Tensor: |
|
""" |
|
Generate samples from the batch. Based on given batch, it will automatically determine whether to generate image or video samples. |
|
Args: |
|
data_batch (dict): raw data batch draw from the training data loader. |
|
iteration (int): Current iteration number. |
|
guidance (float): guidance weights |
|
seed (int): random seed |
|
state_shape (tuple): shape of the state, default to self.state_shape if not provided |
|
n_sample (int): number of samples to generate |
|
is_negative_prompt (bool): use negative prompt t5 in uncondition if true |
|
num_steps (int): number of steps for the diffusion process |
|
solver_option (str): differential equation solver option, default to "2ab"~(mulitstep solver) |
|
preencode_condition (bool): use pre-computed condition if true, save tokenizer's inference time memory/ |
|
""" |
|
if not preencode_condition: |
|
self._normalize_video_databatch_inplace(data_batch) |
|
self._augment_image_dim_inplace(data_batch) |
|
is_image_batch = False |
|
if n_sample is None: |
|
input_key = self.input_image_key if is_image_batch else self.input_data_key |
|
n_sample = data_batch[input_key].shape[0] |
|
if state_shape is None: |
|
if is_image_batch: |
|
state_shape = (self.state_shape[0], 1, *self.state_shape[2:]) |
|
|
|
x0_fn, recon_x = self.get_x0_fn_from_batch( |
|
data_batch, |
|
guidance, |
|
is_negative_prompt=is_negative_prompt, |
|
apply_corruptor=apply_corruptor, |
|
corrupt_sigma=corrupt_sigma, |
|
preencode_condition=preencode_condition, |
|
) |
|
generator = torch.Generator(device=self.tensor_kwargs["device"]) |
|
generator.manual_seed(seed) |
|
x_sigma_max = ( |
|
torch.randn(n_sample, *state_shape, **self.tensor_kwargs, generator=generator) * self.sde.sigma_max |
|
) |
|
|
|
samples = self.sampler( |
|
x0_fn, |
|
x_sigma_max, |
|
num_steps=num_steps, |
|
sigma_min=sigma_min, |
|
sigma_max=self.sde.sigma_max, |
|
solver_option=solver_option, |
|
) |
|
|
|
if return_recon_x: |
|
return samples, recon_x |
|
else: |
|
return samples |
|
|