EthanZyh's picture
modify log
02c5b0e
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import gc
from typing import List
import torch
from inference_config import DiffusionDecoderSamplingConfig
from cosmos1.models.autoregressive.diffusion_decoder.model import LatentDiffusionDecoderModel
from cosmos1.models.autoregressive.diffusion_decoder.utils import linear_blend_video_list, split_with_overlap
from .log import log
def diffusion_decoder_process_tokens(
model: LatentDiffusionDecoderModel,
indices_tensor: List[torch.Tensor],
dd_sampling_config: DiffusionDecoderSamplingConfig = None,
original_video_example: torch.Tensor = None,
t5_emb_batch: List[torch.Tensor] = None,
):
_, T, H, W = original_video_example.shape
if dd_sampling_config is None:
dd_sampling_config = DiffusionDecoderSamplingConfig()
# indices_tensor is assumed to be a list of tensors with shape 1LHW
data_batch_list = []
for sample_num, token_CTHW in enumerate(indices_tensor):
token_BCTHW = token_CTHW.unsqueeze(0).unsqueeze(1)
token_BCTHW = split_with_overlap(
token_BCTHW,
(dd_sampling_config.dd_train_num_video_frames - 1) // 8 + 1,
overlap=dd_sampling_config.overlap,
tobf16=False,
)
data_batch_list.append(
{
"token_chunks": token_BCTHW,
"t5_text_embeddings": t5_emb_batch[sample_num].to(torch.bfloat16),
"t5_text_mask": torch.ones(1, 512, dtype=torch.bfloat16).cuda(),
# other conditions
"image_size": torch.tensor([[H, W, H, W]] * 1, dtype=torch.bfloat16).cuda(),
"fps": torch.tensor([dd_sampling_config.fps] * 1, dtype=torch.bfloat16).cuda(),
"num_frames": torch.tensor(
[dd_sampling_config.dd_train_num_video_frames] * 1, dtype=torch.bfloat16
).cuda(),
"padding_mask": torch.zeros((1, 1, H, W), dtype=torch.bfloat16).cuda(),
}
)
out_videos_batch = []
for idx, data_batch_template in enumerate(data_batch_list):
full_length_sample = []
iterations = min(len(data_batch_template["token_chunks"]), dd_sampling_config.max_iter)
for iter in range(iterations):
gc.collect()
torch.cuda.empty_cache()
data_batch = copy.deepcopy(data_batch_template)
data_batch["video"] = data_batch_template["token_chunks"][iter].cuda().to("cuda")
log.debug(f"Run iter {iter} for video # {idx} at length {data_batch['video'].shape[2]}")
# org_video,
with torch.no_grad():
samples_latent = model.generate_samples_from_batch(
data_batch,
guidance=dd_sampling_config.guidance,
sigma_min=dd_sampling_config.sigma_min,
state_shape=[
dd_sampling_config.continuous_tokenizer_channel,
dd_sampling_config.continuous_tokenizer_spatial_compression_ratio,
H // 8,
W // 8,
],
apply_corruptor=False,
return_recon_x=False,
# corrupt_sigma=dd_sampling_config.sigma,
preencode_condition=True, # We are using discrete model, so the input is already pre-encoded
num_steps=dd_sampling_config.num_steps,
)
log.debug(f"Current sample shape {samples_latent.shape} for video # {idx} ")
full_length_sample.append(samples_latent.detach())
# Turn off because we remove CP
# distributed.barrier()
del data_batch
torch.cuda.empty_cache()
gc.collect()
torch.cuda.empty_cache()
# Decode full-length samples and free GPU memory
full_length_sample_pixs = [model.decode(item).clamp(-1, 1).cpu() for item in full_length_sample]
torch.cuda.empty_cache()
# Blend pixel samples
if len(full_length_sample_pixs) > 1:
full_length_sample_pixel_blend = linear_blend_video_list(
full_length_sample_pixs, dd_sampling_config.overlap
)[:, :, :T]
else:
full_length_sample_pixel_blend = full_length_sample_pixs[0][:, :, :T]
# Batch size of full_length_sample_pixel_blend is always 1
out_videos_batch.append((1 + full_length_sample_pixel_blend[0].cpu()) / 2)
return out_videos_batch