DiffusionText2WorldGeneration / general_dit_video_conditioned.py
EthanZyh's picture
add relative import
3f855fc
raw
history blame
8.96 kB
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional
import torch
from einops import rearrange
from torch import nn
from .conditioner import DataType
from .blocks import TimestepEmbedding, Timesteps
from .general_dit import GeneralDIT
from .log import log
class VideoExtendGeneralDIT(GeneralDIT):
def __init__(self, *args, in_channels=16 + 1, add_augment_sigma_embedding=False, **kwargs):
self.add_augment_sigma_embedding = add_augment_sigma_embedding
# extra channel for video condition mask
super().__init__(*args, in_channels=in_channels, **kwargs)
log.debug(f"VideoExtendGeneralDIT in_channels: {in_channels}")
def build_additional_timestamp_embedder(self):
super().build_additional_timestamp_embedder()
if self.add_augment_sigma_embedding:
log.info("Adding augment sigma embedding")
self.augment_sigma_embedder = nn.Sequential(
Timesteps(self.model_channels),
TimestepEmbedding(self.model_channels, self.model_channels, use_adaln_lora=self.use_adaln_lora),
)
def initialize_weights(self):
if self.add_augment_sigma_embedding:
# Initialize timestep embedding for augment sigma
nn.init.normal_(self.augment_sigma_embedder[1].linear_1.weight, std=0.02)
if self.augment_sigma_embedder[1].linear_1.bias is not None:
nn.init.constant_(self.augment_sigma_embedder[1].linear_1.bias, 0)
nn.init.normal_(self.augment_sigma_embedder[1].linear_2.weight, std=0.02)
if self.augment_sigma_embedder[1].linear_2.bias is not None:
nn.init.constant_(self.augment_sigma_embedder[1].linear_2.bias, 0)
super().initialize_weights() # Call this last since it wil call TP weight init
def forward(
self,
x: torch.Tensor,
timesteps: torch.Tensor,
crossattn_emb: torch.Tensor,
crossattn_mask: Optional[torch.Tensor] = None,
fps: Optional[torch.Tensor] = None,
image_size: Optional[torch.Tensor] = None,
padding_mask: Optional[torch.Tensor] = None,
scalar_feature: Optional[torch.Tensor] = None,
data_type: Optional[DataType] = DataType.VIDEO,
video_cond_bool: Optional[torch.Tensor] = None,
condition_video_indicator: Optional[torch.Tensor] = None,
condition_video_input_mask: Optional[torch.Tensor] = None,
condition_video_augment_sigma: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.Tensor:
"""Forward pass of the video-conditioned DIT model.
Args:
x: Input tensor of shape (B, C, T, H, W)
timesteps: Timestep tensor of shape (B,)
crossattn_emb: Cross attention embeddings of shape (B, N, D)
crossattn_mask: Optional cross attention mask of shape (B, N)
fps: Optional frames per second tensor
image_size: Optional image size tensor
padding_mask: Optional padding mask tensor
scalar_feature: Optional scalar features tensor
data_type: Type of data being processed (default: DataType.VIDEO)
video_cond_bool: Optional video conditioning boolean tensor
condition_video_indicator: Optional video condition indicator tensor
condition_video_input_mask: Required mask tensor for video data type
condition_video_augment_sigma: Optional sigma values for conditional input augmentation
**kwargs: Additional keyword arguments
Returns:
torch.Tensor: Output tensor
"""
B, C, T, H, W = x.shape
if data_type == DataType.VIDEO:
assert condition_video_input_mask is not None, "condition_video_input_mask is required for video data type"
input_list = [x, condition_video_input_mask]
x = torch.cat(
input_list,
dim=1,
)
return super().forward(
x=x,
timesteps=timesteps,
crossattn_emb=crossattn_emb,
crossattn_mask=crossattn_mask,
fps=fps,
image_size=image_size,
padding_mask=padding_mask,
scalar_feature=scalar_feature,
data_type=data_type,
condition_video_augment_sigma=condition_video_augment_sigma,
**kwargs,
)
def forward_before_blocks(
self,
x: torch.Tensor,
timesteps: torch.Tensor,
crossattn_emb: torch.Tensor,
crossattn_mask: Optional[torch.Tensor] = None,
fps: Optional[torch.Tensor] = None,
image_size: Optional[torch.Tensor] = None,
padding_mask: Optional[torch.Tensor] = None,
scalar_feature: Optional[torch.Tensor] = None,
data_type: Optional[DataType] = DataType.VIDEO,
latent_condition: Optional[torch.Tensor] = None,
latent_condition_sigma: Optional[torch.Tensor] = None,
condition_video_augment_sigma: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.Tensor:
"""
Args:
x: (B, C, T, H, W) tensor of spatial-temp inputs
timesteps: (B, ) tensor of timesteps
crossattn_emb: (B, N, D) tensor of cross-attention embeddings
crossattn_mask: (B, N) tensor of cross-attention masks
condition_video_augment_sigma: (B, T) tensor of sigma value for the conditional input augmentation
"""
del kwargs
assert isinstance(
data_type, DataType
), f"Expected DataType, got {type(data_type)}. We need discuss this flag later."
original_shape = x.shape
x_B_T_H_W_D, rope_emb_L_1_1_D, extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = self.prepare_embedded_sequence(
x,
fps=fps,
padding_mask=padding_mask,
latent_condition=latent_condition,
latent_condition_sigma=latent_condition_sigma,
)
# logging affline scale information
affline_scale_log.info = {}
timesteps_B_D, adaln_lora_B_3D = self.t_embedder(timesteps.flatten())
affline_emb_B_D = timesteps_B_D
affline_scale_log.info["timesteps_B_D"] = timesteps_B_D.detach()
if scalar_feature is not None:
raise NotImplementedError("Scalar feature is not implemented yet.")
if self.add_augment_sigma_embedding:
if condition_video_augment_sigma is None:
# Handling image case
# Note: for video case, when there is not condition frames, we also set it as zero, see extend_model augment_conditional_latent_frames function
assert data_type == DataType.IMAGE, "condition_video_augment_sigma is required for video data type"
condition_video_augment_sigma = torch.zeros_like(timesteps.flatten())
affline_augment_sigma_emb_B_D, _ = self.augment_sigma_embedder(condition_video_augment_sigma.flatten())
affline_emb_B_D = affline_emb_B_D + affline_augment_sigma_emb_B_D
affline_scale_log.info["affline_emb_B_D"] = affline_emb_B_D.detach()
affline_emb_B_D = self.affline_norm(affline_emb_B_D)
if self.use_cross_attn_mask:
crossattn_mask = crossattn_mask[:, None, None, :].to(dtype=torch.bool) # [B, 1, 1, length]
else:
crossattn_mask = None
x = rearrange(x_B_T_H_W_D, "B T H W D -> T H W B D")
if extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D is not None:
extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D = rearrange(
extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D, "B T H W D -> T H W B D"
)
crossattn_emb = rearrange(crossattn_emb, "B M D -> M B D")
if crossattn_mask:
crossattn_mask = rearrange(crossattn_mask, "B M -> M B")
output = {
"x": x,
"affline_emb_B_D": affline_emb_B_D,
"crossattn_emb": crossattn_emb,
"crossattn_mask": crossattn_mask,
"rope_emb_L_1_1_D": rope_emb_L_1_1_D,
"adaln_lora_B_3D": adaln_lora_B_3D,
"original_shape": original_shape,
"extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D": extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D,
}
return output