DiffusionText2WorldGeneration / inference_utils.py
EthanZyh's picture
modify log
02c5b0e
raw
history blame
28.6 kB
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import importlib
from contextlib import contextmanager
from typing import List, NamedTuple, Optional, Tuple
import einops
import imageio
import numpy as np
import torch
import torchvision.transforms.functional as transforms_F
from .model_t2w import DiffusionT2WModel
from .model_v2w import DiffusionV2WModel
from .config_helper import get_config_module, override
from .utils_io import load_from_fileobj
from .misc import arch_invariant_rand
TORCH_VERSION: Tuple[int, ...] = tuple(int(x) for x in torch.__version__.split(".")[:2])
if TORCH_VERSION >= (1, 11):
from torch.ao import quantization
from torch.ao.quantization import FakeQuantizeBase, ObserverBase
elif (
TORCH_VERSION >= (1, 8)
and hasattr(torch.quantization, "FakeQuantizeBase")
and hasattr(torch.quantization, "ObserverBase")
):
from torch import quantization
from torch.quantization import FakeQuantizeBase, ObserverBase
DEFAULT_AUGMENT_SIGMA = 0.001
def add_common_arguments(parser):
"""Add common command line arguments for text2world and video2world generation.
Args:
parser (ArgumentParser): Argument parser to add arguments to
The arguments include:
- checkpoint_dir: Base directory containing model weights
- tokenizer_dir: Directory containing tokenizer weights
- video_save_name: Output video filename for single video generation
- video_save_folder: Output directory for batch video generation
- prompt: Text prompt for single video generation
- batch_input_path: Path to JSONL file with input prompts for batch video generation
- negative_prompt: Text prompt describing undesired attributes
- num_steps: Number of diffusion sampling steps
- guidance: Classifier-free guidance scale
- num_video_frames: Number of frames to generate
- height/width: Output video dimensions
- fps: Output video frame rate
- seed: Random seed for reproducibility
- Various model offloading flags
"""
parser.add_argument(
"--checkpoint_dir", type=str, default="checkpoints", help="Base directory containing model checkpoints"
)
parser.add_argument(
"--tokenizer_dir",
type=str,
default="Cosmos-1.0-Tokenizer-CV8x8x8",
help="Tokenizer weights directory relative to checkpoint_dir",
)
parser.add_argument(
"--video_save_name",
type=str,
default="output",
help="Output filename for generating a single video",
)
parser.add_argument(
"--video_save_folder",
type=str,
default="outputs/",
help="Output folder for generating a batch of videos",
)
parser.add_argument(
"--prompt",
type=str,
help="Text prompt for generating a single video",
)
parser.add_argument(
"--batch_input_path",
type=str,
help="Path to a JSONL file of input prompts for generating a batch of videos",
)
parser.add_argument(
"--negative_prompt",
type=str,
default="The video captures a series of frames showing ugly scenes, static with no motion, motion blur, "
"over-saturation, shaky footage, low resolution, grainy texture, pixelated images, poorly lit areas, "
"underexposed and overexposed scenes, poor color balance, washed out colors, choppy sequences, "
"jerky movements, low frame rate, artifacting, color banding, unnatural transitions, outdated special "
"effects, fake elements, unconvincing visuals, poorly edited content, jump cuts, visual noise, and "
"flickering. Overall, the video is of poor quality.",
help="Negative prompt for the video",
)
parser.add_argument("--num_steps", type=int, default=35, help="Number of diffusion sampling steps")
parser.add_argument("--guidance", type=float, default=7, help="Guidance scale value")
parser.add_argument("--num_video_frames", type=int, default=121, help="Number of video frames to sample")
parser.add_argument("--height", type=int, default=704, help="Height of video to sample")
parser.add_argument("--width", type=int, default=1280, help="Width of video to sample")
parser.add_argument("--fps", type=int, default=24, help="FPS of the sampled video")
parser.add_argument("--seed", type=int, default=1, help="Random seed")
parser.add_argument(
"--disable_prompt_upsampler",
action="store_true",
help="Disable prompt upsampling",
)
parser.add_argument(
"--offload_diffusion_transformer",
action="store_true",
help="Offload DiT after inference",
)
parser.add_argument(
"--offload_tokenizer",
action="store_true",
help="Offload tokenizer after inference",
)
parser.add_argument(
"--offload_text_encoder_model",
action="store_true",
help="Offload text encoder model after inference",
)
parser.add_argument(
"--offload_prompt_upsampler",
action="store_true",
help="Offload prompt upsampler after inference",
)
parser.add_argument(
"--offload_guardrail_models",
action="store_true",
help="Offload guardrail models after inference",
)
def validate_args(args: argparse.Namespace, inference_type: str) -> None:
"""Validate command line arguments for text2world and video2world generation."""
assert inference_type in [
"text2world",
"video2world",
], "Invalid inference_type, must be 'text2world' or 'video2world'"
# Validate prompt/image/video args for single or batch generation
if inference_type == "text2world" or (inference_type == "video2world" and args.disable_prompt_upsampler):
assert args.prompt or args.batch_input_path, "--prompt or --batch_input_path must be provided."
if inference_type == "video2world" and not args.batch_input_path:
assert (
args.input_image_or_video_path
), "--input_image_or_video_path must be provided for single video generation."
class _IncompatibleKeys(
NamedTuple(
"IncompatibleKeys",
[
("missing_keys", List[str]),
("unexpected_keys", List[str]),
("incorrect_shapes", List[Tuple[str, Tuple[int], Tuple[int]]]),
],
)
):
pass
def non_strict_load_model(model: torch.nn.Module, checkpoint_state_dict: dict) -> _IncompatibleKeys:
"""Load a model checkpoint with non-strict matching, handling shape mismatches.
Args:
model (torch.nn.Module): Model to load weights into
checkpoint_state_dict (dict): State dict from checkpoint
Returns:
_IncompatibleKeys: Named tuple containing:
- missing_keys: Keys present in model but missing from checkpoint
- unexpected_keys: Keys present in checkpoint but not in model
- incorrect_shapes: Keys with mismatched tensor shapes
The function handles special cases like:
- Uninitialized parameters
- Quantization observers
- TransformerEngine FP8 states
"""
# workaround https://github.com/pytorch/pytorch/issues/24139
model_state_dict = model.state_dict()
incorrect_shapes = []
for k in list(checkpoint_state_dict.keys()):
if k in model_state_dict:
if "_extra_state" in k: # Key introduced by TransformerEngine for FP8
log.debug(f"Skipping key {k} introduced by TransformerEngine for FP8 in the checkpoint.")
continue
model_param = model_state_dict[k]
# Allow mismatch for uninitialized parameters
if TORCH_VERSION >= (1, 8) and isinstance(model_param, torch.nn.parameter.UninitializedParameter):
continue
if not isinstance(model_param, torch.Tensor):
raise ValueError(
f"Find non-tensor parameter {k} in the model. type: {type(model_param)} {type(checkpoint_state_dict[k])}, please check if this key is safe to skip or not."
)
shape_model = tuple(model_param.shape)
shape_checkpoint = tuple(checkpoint_state_dict[k].shape)
if shape_model != shape_checkpoint:
has_observer_base_classes = (
TORCH_VERSION >= (1, 8)
and hasattr(quantization, "ObserverBase")
and hasattr(quantization, "FakeQuantizeBase")
)
if has_observer_base_classes:
# Handle the special case of quantization per channel observers,
# where buffer shape mismatches are expected.
def _get_module_for_key(model: torch.nn.Module, key: str) -> torch.nn.Module:
# foo.bar.param_or_buffer_name -> [foo, bar]
key_parts = key.split(".")[:-1]
cur_module = model
for key_part in key_parts:
cur_module = getattr(cur_module, key_part)
return cur_module
cls_to_skip = (
ObserverBase,
FakeQuantizeBase,
)
target_module = _get_module_for_key(model, k)
if isinstance(target_module, cls_to_skip):
# Do not remove modules with expected shape mismatches
# them from the state_dict loading. They have special logic
# in _load_from_state_dict to handle the mismatches.
continue
incorrect_shapes.append((k, shape_checkpoint, shape_model))
checkpoint_state_dict.pop(k)
incompatible = model.load_state_dict(checkpoint_state_dict, strict=False)
# Remove keys with "_extra_state" suffix, which are non-parameter items introduced by TransformerEngine for FP8 handling
missing_keys = [k for k in incompatible.missing_keys if "_extra_state" not in k]
unexpected_keys = [k for k in incompatible.unexpected_keys if "_extra_state" not in k]
return _IncompatibleKeys(
missing_keys=missing_keys,
unexpected_keys=unexpected_keys,
incorrect_shapes=incorrect_shapes,
)
@contextmanager
def skip_init_linear():
# skip init of nn.Linear
orig_reset_parameters = torch.nn.Linear.reset_parameters
torch.nn.Linear.reset_parameters = lambda x: x
xavier_uniform_ = torch.nn.init.xavier_uniform_
torch.nn.init.xavier_uniform_ = lambda x: x
yield
torch.nn.Linear.reset_parameters = orig_reset_parameters
torch.nn.init.xavier_uniform_ = xavier_uniform_
def load_model_by_config(
config_job_name,
config_file="projects/cosmos_video/config/config.py",
model_class=DiffusionT2WModel,
):
config_module = get_config_module(config_file)
config = importlib.import_module(config_module).make_config()
config = override(config, ["--", f"experiment={config_job_name}"])
# Check that the config is valid
config.validate()
# Freeze the config so developers don't change it during training.
config.freeze() # type: ignore
# Initialize model
with skip_init_linear():
model = model_class(config.model)
return model
def load_network_model(model: DiffusionT2WModel, ckpt_path: str):
with skip_init_linear():
model.set_up_model()
net_state_dict = torch.load(ckpt_path, map_location="cpu", weights_only=True)
log.debug(non_strict_load_model(model.model, net_state_dict))
model.cuda()
def load_tokenizer_model(model: DiffusionT2WModel, tokenizer_dir: str):
with skip_init_linear():
model.set_up_tokenizer(tokenizer_dir)
model.cuda()
def prepare_data_batch(
height: int,
width: int,
num_frames: int,
fps: int,
prompt_embedding: torch.Tensor,
negative_prompt_embedding: Optional[torch.Tensor] = None,
):
"""Prepare input batch tensors for video generation.
Args:
height (int): Height of video frames
width (int): Width of video frames
num_frames (int): Number of frames to generate
fps (int): Frames per second
prompt_embedding (torch.Tensor): Encoded text prompt embeddings
negative_prompt_embedding (torch.Tensor, optional): Encoded negative prompt embeddings
Returns:
dict: Batch dictionary containing:
- video: Zero tensor of target video shape
- t5_text_mask: Attention mask for text embeddings
- image_size: Target frame dimensions
- fps: Target frame rate
- num_frames: Number of frames
- padding_mask: Frame padding mask
- t5_text_embeddings: Prompt embeddings
- neg_t5_text_embeddings: Negative prompt embeddings (if provided)
- neg_t5_text_mask: Mask for negative embeddings (if provided)
"""
# Create base data batch
data_batch = {
"video": torch.zeros((1, 3, num_frames, height, width), dtype=torch.uint8).cuda(),
"t5_text_mask": torch.ones(1, 512, dtype=torch.bfloat16).cuda(),
"image_size": torch.tensor([[height, width, height, width]] * 1, dtype=torch.bfloat16).cuda(),
"fps": torch.tensor([fps] * 1, dtype=torch.bfloat16).cuda(),
"num_frames": torch.tensor([num_frames] * 1, dtype=torch.bfloat16).cuda(),
"padding_mask": torch.zeros((1, 1, height, width), dtype=torch.bfloat16).cuda(),
}
# Handle text embeddings
t5_embed = prompt_embedding.to(dtype=torch.bfloat16).cuda()
data_batch["t5_text_embeddings"] = t5_embed
if negative_prompt_embedding is not None:
neg_t5_embed = negative_prompt_embedding.to(dtype=torch.bfloat16).cuda()
data_batch["neg_t5_text_embeddings"] = neg_t5_embed
data_batch["neg_t5_text_mask"] = torch.ones(1, 512, dtype=torch.bfloat16).cuda()
return data_batch
def get_video_batch(model, prompt_embedding, negative_prompt_embedding, height, width, fps, num_video_frames):
"""Prepare complete input batch for video generation including latent dimensions.
Args:
model: Diffusion model instance
prompt_embedding (torch.Tensor): Text prompt embeddings
negative_prompt_embedding (torch.Tensor): Negative prompt embeddings
height (int): Output video height
width (int): Output video width
fps (int): Output video frame rate
num_video_frames (int): Number of frames to generate
Returns:
tuple:
- data_batch (dict): Complete model input batch
- state_shape (list): Shape of latent state [C,T,H,W] accounting for VAE compression
"""
raw_video_batch = prepare_data_batch(
height=height,
width=width,
num_frames=num_video_frames,
fps=fps,
prompt_embedding=prompt_embedding,
negative_prompt_embedding=negative_prompt_embedding,
)
state_shape = [
model.tokenizer.channel,
model.tokenizer.get_latent_num_frames(num_video_frames),
height // model.tokenizer.spatial_compression_factor,
width // model.tokenizer.spatial_compression_factor,
]
return raw_video_batch, state_shape
def generate_world_from_text(
model: DiffusionT2WModel,
state_shape: list[int],
is_negative_prompt: bool,
data_batch: dict,
guidance: float,
num_steps: int,
seed: int,
):
"""Generate video from text prompt using diffusion model.
Args:
model (DiffusionT2WModel): Text-to-video diffusion model
state_shape (list[int]): Latent state dimensions [C,T,H,W]
is_negative_prompt (bool): Whether negative prompt is provided
data_batch (dict): Model input batch with embeddings
guidance (float): Classifier-free guidance scale
num_steps (int): Number of diffusion sampling steps
seed (int): Random seed for reproducibility
Returns:
np.ndarray: Generated video frames [T,H,W,C], range [0,255]
The function:
1. Initializes random latent with maximum noise
2. Performs guided diffusion sampling
3. Decodes latents to pixel space
"""
x_sigma_max = (
arch_invariant_rand(
(1,) + tuple(state_shape),
torch.float32,
model.tensor_kwargs["device"],
seed,
)
* model.sde.sigma_max
)
# Generate video
sample = model.generate_samples_from_batch(
data_batch,
guidance=guidance,
state_shape=state_shape,
num_steps=num_steps,
is_negative_prompt=is_negative_prompt,
seed=seed,
x_sigma_max=x_sigma_max,
)
return sample
def generate_world_from_video(
model: DiffusionV2WModel,
state_shape: list[int],
is_negative_prompt: bool,
data_batch: dict,
guidance: float,
num_steps: int,
seed: int,
condition_latent: torch.Tensor,
num_input_frames: int,
) -> Tuple[np.array, list, list]:
"""Generate video using a conditioning video/image input.
Args:
model (DiffusionV2WModel): The diffusion model instance
state_shape (list[int]): Shape of the latent state [C,T,H,W]
is_negative_prompt (bool): Whether negative prompt is provided
data_batch (dict): Batch containing model inputs including text embeddings
guidance (float): Classifier-free guidance scale for sampling
num_steps (int): Number of diffusion sampling steps
seed (int): Random seed for generation
condition_latent (torch.Tensor): Latent tensor from conditioning video/image file
num_input_frames (int): Number of input frames
Returns:
np.array: Generated video frames in shape [T,H,W,C], range [0,255]
"""
assert not model.config.conditioner.video_cond_bool.sample_tokens_start_from_p_or_i, "not supported"
augment_sigma = DEFAULT_AUGMENT_SIGMA
if condition_latent.shape[2] < state_shape[1]:
# Padding condition latent to state shape
b, c, t, h, w = condition_latent.shape
condition_latent = torch.cat(
[
condition_latent,
condition_latent.new_zeros(b, c, state_shape[1] - t, h, w),
],
dim=2,
).contiguous()
num_of_latent_condition = compute_num_latent_frames(model, num_input_frames)
x_sigma_max = (
arch_invariant_rand(
(1,) + tuple(state_shape),
torch.float32,
model.tensor_kwargs["device"],
seed,
)
* model.sde.sigma_max
)
sample = model.generate_samples_from_batch(
data_batch,
guidance=guidance,
state_shape=state_shape,
num_steps=num_steps,
is_negative_prompt=is_negative_prompt,
seed=seed,
condition_latent=condition_latent,
num_condition_t=num_of_latent_condition,
condition_video_augment_sigma_in_inference=augment_sigma,
x_sigma_max=x_sigma_max,
)
return sample
def read_video_or_image_into_frames_BCTHW(
input_path: str,
input_path_format: str = "mp4",
H: int = None,
W: int = None,
normalize: bool = True,
max_frames: int = -1,
also_return_fps: bool = False,
) -> torch.Tensor:
"""Read video or image file and convert to tensor format.
Args:
input_path (str): Path to input video/image file
input_path_format (str): Format of input file (default: "mp4")
H (int, optional): Height to resize frames to
W (int, optional): Width to resize frames to
normalize (bool): Whether to normalize pixel values to [-1,1] (default: True)
max_frames (int): Maximum number of frames to read (-1 for all frames)
also_return_fps (bool): Whether to return fps along with frames
Returns:
torch.Tensor | tuple: Video tensor in shape [B,C,T,H,W], optionally with fps if requested
"""
log.debug(f"Reading video from {input_path}")
loaded_data = load_from_fileobj(input_path, format=input_path_format)
frames, meta_data = loaded_data
if input_path.endswith(".png") or input_path.endswith(".jpg") or input_path.endswith(".jpeg"):
frames = np.array(frames[0]) # HWC, [0,255]
if frames.shape[-1] > 3: # RGBA, set the transparent to white
# Separate the RGB and Alpha channels
rgb_channels = frames[..., :3]
alpha_channel = frames[..., 3] / 255.0 # Normalize alpha channel to [0, 1]
# Create a white background
white_bg = np.ones_like(rgb_channels) * 255 # White background in RGB
# Blend the RGB channels with the white background based on the alpha channel
frames = (rgb_channels * alpha_channel[..., None] + white_bg * (1 - alpha_channel[..., None])).astype(
np.uint8
)
frames = [frames]
fps = 0
else:
fps = int(meta_data.get("fps"))
if max_frames != -1:
frames = frames[:max_frames]
input_tensor = np.stack(frames, axis=0)
input_tensor = einops.rearrange(input_tensor, "t h w c -> t c h w")
if normalize:
input_tensor = input_tensor / 128.0 - 1.0
input_tensor = torch.from_numpy(input_tensor).bfloat16() # TCHW
log.debug(f"Raw data shape: {input_tensor.shape}")
if H is not None and W is not None:
input_tensor = transforms_F.resize(
input_tensor,
size=(H, W), # type: ignore
interpolation=transforms_F.InterpolationMode.BICUBIC,
antialias=True,
)
input_tensor = einops.rearrange(input_tensor, "(b t) c h w -> b c t h w", b=1)
if normalize:
input_tensor = input_tensor.to("cuda")
log.debug(f"Load shape {input_tensor.shape} value {input_tensor.min()}, {input_tensor.max()}")
if also_return_fps:
return input_tensor, fps
return input_tensor
def compute_num_latent_frames(model: DiffusionV2WModel, num_input_frames: int, downsample_factor=8) -> int:
"""This function computes the number of latent frames given the number of input frames.
Args:
model (DiffusionV2WModel): video generation model
num_input_frames (int): number of input frames
downsample_factor (int): downsample factor for temporal reduce
Returns:
int: number of latent frames
"""
num_latent_frames = (
num_input_frames
// model.tokenizer.video_vae.pixel_chunk_duration
* model.tokenizer.video_vae.latent_chunk_duration
)
if num_input_frames % model.tokenizer.video_vae.latent_chunk_duration == 1:
num_latent_frames += 1
elif num_input_frames % model.tokenizer.video_vae.latent_chunk_duration > 1:
assert (
num_input_frames % model.tokenizer.video_vae.pixel_chunk_duration - 1
) % downsample_factor == 0, f"num_input_frames % model.tokenizer.video_vae.pixel_chunk_duration - 1 must be divisible by {downsample_factor}"
num_latent_frames += (
1 + (num_input_frames % model.tokenizer.video_vae.pixel_chunk_duration - 1) // downsample_factor
)
return num_latent_frames
def create_condition_latent_from_input_frames(
model: DiffusionV2WModel,
input_frames: torch.Tensor,
num_frames_condition: int = 25,
):
"""Create condition latent for video generation from input frames.
Takes the last num_frames_condition frames from input as conditioning.
Args:
model (DiffusionV2WModel): Video generation model
input_frames (torch.Tensor): Input video tensor [B,C,T,H,W], range [-1,1]
num_frames_condition (int): Number of frames to use for conditioning
Returns:
tuple: (condition_latent, encode_input_frames) where:
- condition_latent (torch.Tensor): Encoded latent condition [B,C,T,H,W]
- encode_input_frames (torch.Tensor): Padded input frames used for encoding
"""
B, C, T, H, W = input_frames.shape
num_frames_encode = (
model.tokenizer.pixel_chunk_duration
) # (model.state_shape[1] - 1) / model.vae.pixel_chunk_duration + 1
log.debug(
f"num_frames_encode not set, set it based on pixel chunk duration and model state shape: {num_frames_encode}"
)
log.debug(
f"Create condition latent from input frames {input_frames.shape}, value {input_frames.min()}, {input_frames.max()}, dtype {input_frames.dtype}"
)
assert (
input_frames.shape[2] >= num_frames_condition
), f"input_frames not enough for condition, require at least {num_frames_condition}, get {input_frames.shape[2]}, {input_frames.shape}"
assert (
num_frames_encode >= num_frames_condition
), f"num_frames_encode should be larger than num_frames_condition, get {num_frames_encode}, {num_frames_condition}"
# Put the conditioal frames to the begining of the video, and pad the end with zero
condition_frames = input_frames[:, :, -num_frames_condition:]
padding_frames = condition_frames.new_zeros(B, C, num_frames_encode - num_frames_condition, H, W)
encode_input_frames = torch.cat([condition_frames, padding_frames], dim=2)
log.debug(
f"create latent with input shape {encode_input_frames.shape} including padding {num_frames_encode - num_frames_condition} at the end"
)
latent = model.encode(encode_input_frames)
return latent, encode_input_frames
def get_condition_latent(
model: DiffusionV2WModel,
input_image_or_video_path: str,
num_input_frames: int = 1,
state_shape: list[int] = None,
):
"""Get condition latent from input image/video file.
Args:
model (DiffusionV2WModel): Video generation model
input_image_or_video_path (str): Path to conditioning image/video
num_input_frames (int): Number of input frames for video2world prediction
Returns:
tuple: (condition_latent, input_frames) where:
- condition_latent (torch.Tensor): Encoded latent condition [B,C,T,H,W]
- input_frames (torch.Tensor): Input frames tensor [B,C,T,H,W]
"""
if state_shape is None:
state_shape = model.state_shape
assert num_input_frames > 0, "num_input_frames must be greater than 0"
H, W = (
state_shape[-2] * model.tokenizer.spatial_compression_factor,
state_shape[-1] * model.tokenizer.spatial_compression_factor,
)
input_path_format = input_image_or_video_path.split(".")[-1]
input_frames = read_video_or_image_into_frames_BCTHW(
input_image_or_video_path,
input_path_format=input_path_format,
H=H,
W=W,
)
condition_latent, _ = create_condition_latent_from_input_frames(model, input_frames, num_input_frames)
condition_latent = condition_latent.to(torch.bfloat16)
return condition_latent
def check_input_frames(input_path: str, required_frames: int) -> bool:
"""Check if input video/image has sufficient frames.
Args:
input_path: Path to input video or image
required_frames: Number of required frames
Returns:
np.ndarray of frames if valid, None if invalid
"""
if input_path.endswith((".jpg", ".jpeg", ".png")):
if required_frames > 1:
log.error(f"Input ({input_path}) is an image but {required_frames} frames are required")
return False
return True # Let the pipeline handle image loading
# For video input
try:
vid = imageio.get_reader(input_path, "ffmpeg")
frame_count = vid.count_frames()
if frame_count < required_frames:
log.error(f"Input video has {frame_count} frames but {required_frames} frames are required")
return False
else:
return True
except Exception as e:
log.error(f"Error reading video file {input_path}: {e}")
return False