|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import List, Optional, TypedDict |
|
|
|
import torch |
|
|
|
from .ar_model import AutoRegressiveModel |
|
from .ar_tokenizer_image_text_tokenizer import ImageTextTokenizer |
|
from .ar_tokenizer_text_tokenizer import TextTokenizer |
|
|
|
|
|
class ChatPrediction(TypedDict, total=False): |
|
tokens: List[str] |
|
logprobs: List[float] |
|
|
|
|
|
def chat_completion( |
|
model: AutoRegressiveModel, |
|
dialogs: List, |
|
seed: int = None, |
|
temperature: float = 0.01, |
|
top_k: int = None, |
|
top_p: float = None, |
|
max_gen_len: Optional[int] = None, |
|
num_gen_seq: int = 1, |
|
logprobs: bool = False, |
|
generation_prefix: str = "", |
|
compile_sampling: bool = False, |
|
compile_prefill: bool = False, |
|
stop_tokens=None, |
|
verbose: bool = False, |
|
) -> List[ChatPrediction]: |
|
""" |
|
Generate assistant responses for a list of conversational dialogs using the language generation model. |
|
|
|
Args: |
|
model (AutoRegressiveModel): The language generation model. |
|
dialogs (List): List of conversational dialogs, where each dialog is a list of messages. |
|
NOTE if you are using a VLM, all dialogs must either all have images ("image" field) or all be pure text. |
|
temperature (float, optional): Temperature value for controlling randomness in sampling. Defaults to 0.01. |
|
top_k (int, optional): Top-k probability threshold for nucleus sampling. Defaults to None. If not None, top-p sampling is ignored. |
|
top_p (float, optional): Top-p probability threshold for nucleus sampling. Defaults to None. If not None, top-k sampling is ignored. |
|
max_gen_len (Optional[int], optional): Maximum length of the generated response sequence. |
|
If not provided, it's set to the model's maximum sequence length minus 1. |
|
num_gen_seq (int, optional): Number of sequences to generate per prompt. Defaults to 1. |
|
logprobs (bool, optional): Flag indicating whether to compute token log probabilities. Defaults to False. |
|
generation_prefix (str, optional): Prefix to add before asking model to generate. Helpful to guide the generation. Defaults to "". |
|
compile_sampling (bool, optional): Flag indicating whether to compile the generation function. Defaults to False. |
|
compile_prefill (bool, optional): Flag indicating whether to compile the prefill function. Defaults to False. |
|
stop_tokens (Set[int], optional): Set of tokens to stop generation. Defaults to None. If not None, it will override the model's stop tokens. |
|
verbose (bool, optional): Flag indicating whether to print the generation throughput. Defaults to False. |
|
Returns: |
|
List[ChatPrediction]: List of chat predictions, each containing the assistant's generated response. |
|
|
|
Note: |
|
This method generates assistant responses for the provided conversational dialogs. |
|
It employs nucleus sampling to introduce controlled randomness in text generation. |
|
If logprobs is True, token log probabilities are computed for each generated token. |
|
""" |
|
if max_gen_len is None: |
|
max_gen_len = model.model.params.max_seq_len - 1 |
|
images = None |
|
if isinstance(model.tokenizer.text_tokenizer, ImageTextTokenizer): |
|
|
|
prompt_dicts = [ |
|
model.tokenizer.text_tokenizer.apply_chat_template( |
|
dialog, generation_prefix=generation_prefix, add_generation_prompt=True |
|
) |
|
for dialog in dialogs |
|
] |
|
prompt_tokens = [prompt_dict["input_ids"] for prompt_dict in prompt_dicts] |
|
num_images = sum(["pixel_values" in prompt_dict for prompt_dict in prompt_dicts]) |
|
assert num_images in [0, len(dialogs)], "For VLM, all dialogs must either all have images or all be pure text." |
|
if num_images > 0: |
|
images = torch.cat([prompt_dict["pixel_values"] for prompt_dict in prompt_dicts], dim=0) |
|
else: |
|
images = None |
|
elif isinstance(model.tokenizer.text_tokenizer, TextTokenizer): |
|
|
|
prompt_tokens = [ |
|
model.tokenizer.text_tokenizer.apply_chat_template( |
|
dialog, generation_prefix=generation_prefix, add_generation_prompt=True |
|
) |
|
for dialog in dialogs |
|
] |
|
else: |
|
prompt_tokens = [model.formatter.encode_dialog_prompt(dialog) for dialog in dialogs] |
|
|
|
generation_tokens, generation_logprobs = model.generate( |
|
prompt_tokens=prompt_tokens, |
|
seed=seed, |
|
max_gen_len=max_gen_len, |
|
num_gen_seq=num_gen_seq, |
|
temperature=temperature, |
|
top_k=top_k, |
|
top_p=top_p, |
|
compile_sampling=compile_sampling, |
|
compile_prefill=compile_prefill, |
|
stop_tokens=stop_tokens, |
|
verbose=verbose, |
|
images=images, |
|
) |
|
|
|
if logprobs: |
|
return [ |
|
{ |
|
"generation": { |
|
"role": "assistant", |
|
"content": model.tokenizer.text_tokenizer.decode(t), |
|
}, |
|
"tokens": [model.tokenizer.text_tokenizer.decode([x]) for x in t], |
|
"logprobs": logprobs_i, |
|
} |
|
for t, logprobs_i in zip(generation_tokens, generation_logprobs) |
|
] |
|
return [ |
|
{ |
|
"generation": { |
|
"role": "assistant", |
|
"content": model.tokenizer.text_tokenizer.decode(t), |
|
}, |
|
} |
|
for t in generation_tokens |
|
] |
|
|