|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Optional, Tuple |
|
|
|
import torch |
|
|
|
from cosmos1.models.autoregressive.networks.transformer import Transformer |
|
|
|
|
|
def sample_top_p(logits, temperature, top_p, return_probs: bool = False): |
|
""" |
|
Perform top-p (nucleus) sampling on a probability distribution. |
|
|
|
Args: |
|
logits (torch.Tensor): Logits of the probability distribution. |
|
temperature (float): Temperature for sampling. |
|
top_p (float): Probability threshold for top-p sampling. |
|
|
|
Returns: |
|
torch.Tensor: Sampled token indices. |
|
|
|
Note: |
|
Top-p sampling selects the smallest set of tokens whose cumulative probability mass |
|
exceeds the threshold p. The distribution is renormalized based on the selected tokens. |
|
""" |
|
probs = torch.softmax(logits[:, -1, :] / temperature, dim=-1) |
|
|
|
probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True) |
|
|
|
probs_sum = torch.cumsum(probs_sort, dim=-1) |
|
|
|
mask = probs_sum - probs_sort > top_p |
|
|
|
probs_sort[mask] = 0.0 |
|
|
|
probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True)) |
|
|
|
|
|
next_token = multinomial_sample_one_no_sync(probs_sort, dtype=torch.int64) |
|
|
|
next_token = torch.gather(probs_idx, -1, next_token) |
|
if return_probs: |
|
|
|
probs_unsorted = torch.zeros_like(probs_sort) |
|
|
|
probs_unsorted.scatter_(-1, probs_idx, probs_sort) |
|
else: |
|
probs_unsorted = None |
|
return next_token, probs_unsorted |
|
|
|
|
|
def multinomial_sample_one_no_sync(probs_sort, dtype=torch.int): |
|
""" |
|
Multinomial sampling without a cuda synchronization. |
|
Source: https://github.com/pytorch-labs/gpt-fast/blob/main/generate.py |
|
""" |
|
q = torch.empty_like(probs_sort).exponential_(1) |
|
return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=dtype) |
|
|
|
|
|
def logits_to_probs( |
|
logits, |
|
temperature: float = 1.0, |
|
top_k: Optional[int] = None, |
|
): |
|
logits = logits / max(temperature, 1e-5) |
|
|
|
if top_k is not None: |
|
v, _ = torch.topk(logits, min(top_k, logits.size(-1))) |
|
pivot = v.select(-1, -1).unsqueeze(-1) |
|
logits = torch.where(logits < pivot, -float("Inf"), logits) |
|
probs = torch.nn.functional.softmax(logits, dim=-1) |
|
return probs |
|
|
|
|
|
def sample_top_k(logits, temperature: float = 1.0, top_k: Optional[int] = None): |
|
""" |
|
Sample from the logits using top-k sampling. |
|
Source: https://github.com/pytorch-labs/gpt-fast/blob/main/generate.py |
|
""" |
|
|
|
if temperature == 0.0: |
|
idx_next = torch.argmax(logits[:, -1, :], dim=-1, keepdim=True) |
|
probs = None |
|
else: |
|
probs = logits_to_probs(logits[:, -1, :], temperature, top_k) |
|
idx_next = multinomial_sample_one_no_sync(probs) |
|
return idx_next, probs |
|
|
|
|
|
def prefill( |
|
model: Transformer, |
|
input_pos: torch.Tensor, |
|
tokens: torch.Tensor = None, |
|
token_embeddings: torch.Tensor = None, |
|
temperature: float = 1.0, |
|
top_k: Optional[int] = None, |
|
top_p: Optional[float] = None, |
|
**kwargs, |
|
) -> torch.Tensor: |
|
logits = model(tokens=tokens, token_embeddings=token_embeddings, input_pos=input_pos, **kwargs) |
|
|
|
assert ( |
|
top_p is None or top_k is None |
|
), "Only one of top-p or top-k can be provided, got top-p={top_p} and top-k={top_k}" |
|
if top_p is not None: |
|
return sample_top_p(logits, temperature=temperature, top_p=top_p)[0] |
|
else: |
|
return sample_top_k(logits, temperature=temperature, top_k=top_k)[0] |
|
|
|
|
|
def decode_one_token( |
|
model: Transformer, |
|
tokens: torch.Tensor, |
|
input_pos: torch.Tensor, |
|
temperature: float = 1.0, |
|
top_k: Optional[int] = None, |
|
top_p: Optional[float] = None, |
|
**kwargs, |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
""" |
|
Decode a single token from the autoregressive model. |
|
""" |
|
logits = model(tokens=tokens, input_pos=input_pos, **kwargs) |
|
if top_p is not None: |
|
return sample_top_p(logits, temperature=temperature, top_p=top_p) |
|
else: |
|
return sample_top_k(logits, temperature=temperature, top_k=top_k) |
|
|
|
|
|
def decode_n_tokens( |
|
model: Transformer, |
|
cur_token: torch.Tensor, |
|
input_pos: torch.Tensor, |
|
num_new_tokens: int, |
|
stop_tokens: torch.Tensor = None, |
|
temperature: float = 1.0, |
|
top_p: Optional[float] = None, |
|
top_k: Optional[int] = None, |
|
return_probs: bool = False, |
|
decode_one_token_function=decode_one_token, |
|
**kwargs, |
|
): |
|
""" |
|
Decode n tokens from the autoregressive model. |
|
Adapted from https://github.com/pytorch-labs/gpt-fast/blob/main/generate.py |
|
""" |
|
new_tokens, new_probs = [], [] |
|
batch_size = cur_token.shape[0] |
|
assert ( |
|
top_p is None or top_k is None |
|
), "Only one of top-p or top-k can be provided, got top-p={top_p} and top-k={top_k}" |
|
if stop_tokens is not None: |
|
|
|
eos_reached = torch.tensor([False] * batch_size, device="cuda") |
|
for t in range(num_new_tokens): |
|
with torch.backends.cuda.sdp_kernel( |
|
enable_flash=False, enable_mem_efficient=False, enable_math=True |
|
): |
|
next_token, next_prob = decode_one_token_function( |
|
model, |
|
tokens=cur_token, |
|
input_pos=input_pos, |
|
temperature=temperature, |
|
top_k=top_k, |
|
top_p=top_p, |
|
**kwargs, |
|
) |
|
input_pos += 1 |
|
if stop_tokens is not None and len(stop_tokens) > 0: |
|
eos_reached = eos_reached | (torch.isin(next_token, stop_tokens)) |
|
if eos_reached.all(): |
|
break |
|
new_tokens.append(next_token.clone()) |
|
if return_probs: |
|
new_probs.append(next_prob.clone()) |
|
cur_token = next_token.clone() |
|
|
|
if return_probs: |
|
return new_tokens, new_probs |
|
else: |
|
return new_tokens |
|
|