File size: 28,602 Bytes
01a383f 84490df 01a383f 84490df 01a383f 84490df 01a383f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 |
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import importlib
from contextlib import contextmanager
from typing import List, NamedTuple, Optional, Tuple
import einops
import imageio
import numpy as np
import torch
import torchvision.transforms.functional as transforms_F
from. model_t2w import DiffusionT2WModel
from .model_v2w import DiffusionV2WModel
from .config_helper import get_config_module, override
from .utils_io import load_from_fileobj
from .misc import arch_invariant_rand
TORCH_VERSION: Tuple[int, ...] = tuple(int(x) for x in torch.__version__.split(".")[:2])
if TORCH_VERSION >= (1, 11):
from torch.ao import quantization
from torch.ao.quantization import FakeQuantizeBase, ObserverBase
elif (
TORCH_VERSION >= (1, 8)
and hasattr(torch.quantization, "FakeQuantizeBase")
and hasattr(torch.quantization, "ObserverBase")
):
from torch import quantization
from torch.quantization import FakeQuantizeBase, ObserverBase
DEFAULT_AUGMENT_SIGMA = 0.001
def add_common_arguments(parser):
"""Add common command line arguments for text2world and video2world generation.
Args:
parser (ArgumentParser): Argument parser to add arguments to
The arguments include:
- checkpoint_dir: Base directory containing model weights
- tokenizer_dir: Directory containing tokenizer weights
- video_save_name: Output video filename for single video generation
- video_save_folder: Output directory for batch video generation
- prompt: Text prompt for single video generation
- batch_input_path: Path to JSONL file with input prompts for batch video generation
- negative_prompt: Text prompt describing undesired attributes
- num_steps: Number of diffusion sampling steps
- guidance: Classifier-free guidance scale
- num_video_frames: Number of frames to generate
- height/width: Output video dimensions
- fps: Output video frame rate
- seed: Random seed for reproducibility
- Various model offloading flags
"""
parser.add_argument(
"--checkpoint_dir", type=str, default="checkpoints", help="Base directory containing model checkpoints"
)
parser.add_argument(
"--tokenizer_dir",
type=str,
default="Cosmos-1.0-Tokenizer-CV8x8x8",
help="Tokenizer weights directory relative to checkpoint_dir",
)
parser.add_argument(
"--video_save_name",
type=str,
default="output",
help="Output filename for generating a single video",
)
parser.add_argument(
"--video_save_folder",
type=str,
default="outputs/",
help="Output folder for generating a batch of videos",
)
parser.add_argument(
"--prompt",
type=str,
help="Text prompt for generating a single video",
)
parser.add_argument(
"--batch_input_path",
type=str,
help="Path to a JSONL file of input prompts for generating a batch of videos",
)
parser.add_argument(
"--negative_prompt",
type=str,
default="The video captures a series of frames showing ugly scenes, static with no motion, motion blur, "
"over-saturation, shaky footage, low resolution, grainy texture, pixelated images, poorly lit areas, "
"underexposed and overexposed scenes, poor color balance, washed out colors, choppy sequences, "
"jerky movements, low frame rate, artifacting, color banding, unnatural transitions, outdated special "
"effects, fake elements, unconvincing visuals, poorly edited content, jump cuts, visual noise, and "
"flickering. Overall, the video is of poor quality.",
help="Negative prompt for the video",
)
parser.add_argument("--num_steps", type=int, default=35, help="Number of diffusion sampling steps")
parser.add_argument("--guidance", type=float, default=7, help="Guidance scale value")
parser.add_argument("--num_video_frames", type=int, default=121, help="Number of video frames to sample")
parser.add_argument("--height", type=int, default=704, help="Height of video to sample")
parser.add_argument("--width", type=int, default=1280, help="Width of video to sample")
parser.add_argument("--fps", type=int, default=24, help="FPS of the sampled video")
parser.add_argument("--seed", type=int, default=1, help="Random seed")
parser.add_argument(
"--disable_prompt_upsampler",
action="store_true",
help="Disable prompt upsampling",
)
parser.add_argument(
"--offload_diffusion_transformer",
action="store_true",
help="Offload DiT after inference",
)
parser.add_argument(
"--offload_tokenizer",
action="store_true",
help="Offload tokenizer after inference",
)
parser.add_argument(
"--offload_text_encoder_model",
action="store_true",
help="Offload text encoder model after inference",
)
parser.add_argument(
"--offload_prompt_upsampler",
action="store_true",
help="Offload prompt upsampler after inference",
)
parser.add_argument(
"--offload_guardrail_models",
action="store_true",
help="Offload guardrail models after inference",
)
def validate_args(args: argparse.Namespace, inference_type: str) -> None:
"""Validate command line arguments for text2world and video2world generation."""
assert inference_type in [
"text2world",
"video2world",
], "Invalid inference_type, must be 'text2world' or 'video2world'"
# Validate prompt/image/video args for single or batch generation
if inference_type == "text2world" or (inference_type == "video2world" and args.disable_prompt_upsampler):
assert args.prompt or args.batch_input_path, "--prompt or --batch_input_path must be provided."
if inference_type == "video2world" and not args.batch_input_path:
assert (
args.input_image_or_video_path
), "--input_image_or_video_path must be provided for single video generation."
class _IncompatibleKeys(
NamedTuple(
"IncompatibleKeys",
[
("missing_keys", List[str]),
("unexpected_keys", List[str]),
("incorrect_shapes", List[Tuple[str, Tuple[int], Tuple[int]]]),
],
)
):
pass
def non_strict_load_model(model: torch.nn.Module, checkpoint_state_dict: dict) -> _IncompatibleKeys:
"""Load a model checkpoint with non-strict matching, handling shape mismatches.
Args:
model (torch.nn.Module): Model to load weights into
checkpoint_state_dict (dict): State dict from checkpoint
Returns:
_IncompatibleKeys: Named tuple containing:
- missing_keys: Keys present in model but missing from checkpoint
- unexpected_keys: Keys present in checkpoint but not in model
- incorrect_shapes: Keys with mismatched tensor shapes
The function handles special cases like:
- Uninitialized parameters
- Quantization observers
- TransformerEngine FP8 states
"""
# workaround https://github.com/pytorch/pytorch/issues/24139
model_state_dict = model.state_dict()
incorrect_shapes = []
for k in list(checkpoint_state_dict.keys()):
if k in model_state_dict:
if "_extra_state" in k: # Key introduced by TransformerEngine for FP8
log.debug(f"Skipping key {k} introduced by TransformerEngine for FP8 in the checkpoint.")
continue
model_param = model_state_dict[k]
# Allow mismatch for uninitialized parameters
if TORCH_VERSION >= (1, 8) and isinstance(model_param, torch.nn.parameter.UninitializedParameter):
continue
if not isinstance(model_param, torch.Tensor):
raise ValueError(
f"Find non-tensor parameter {k} in the model. type: {type(model_param)} {type(checkpoint_state_dict[k])}, please check if this key is safe to skip or not."
)
shape_model = tuple(model_param.shape)
shape_checkpoint = tuple(checkpoint_state_dict[k].shape)
if shape_model != shape_checkpoint:
has_observer_base_classes = (
TORCH_VERSION >= (1, 8)
and hasattr(quantization, "ObserverBase")
and hasattr(quantization, "FakeQuantizeBase")
)
if has_observer_base_classes:
# Handle the special case of quantization per channel observers,
# where buffer shape mismatches are expected.
def _get_module_for_key(model: torch.nn.Module, key: str) -> torch.nn.Module:
# foo.bar.param_or_buffer_name -> [foo, bar]
key_parts = key.split(".")[:-1]
cur_module = model
for key_part in key_parts:
cur_module = getattr(cur_module, key_part)
return cur_module
cls_to_skip = (
ObserverBase,
FakeQuantizeBase,
)
target_module = _get_module_for_key(model, k)
if isinstance(target_module, cls_to_skip):
# Do not remove modules with expected shape mismatches
# them from the state_dict loading. They have special logic
# in _load_from_state_dict to handle the mismatches.
continue
incorrect_shapes.append((k, shape_checkpoint, shape_model))
checkpoint_state_dict.pop(k)
incompatible = model.load_state_dict(checkpoint_state_dict, strict=False)
# Remove keys with "_extra_state" suffix, which are non-parameter items introduced by TransformerEngine for FP8 handling
missing_keys = [k for k in incompatible.missing_keys if "_extra_state" not in k]
unexpected_keys = [k for k in incompatible.unexpected_keys if "_extra_state" not in k]
return _IncompatibleKeys(
missing_keys=missing_keys,
unexpected_keys=unexpected_keys,
incorrect_shapes=incorrect_shapes,
)
@contextmanager
def skip_init_linear():
# skip init of nn.Linear
orig_reset_parameters = torch.nn.Linear.reset_parameters
torch.nn.Linear.reset_parameters = lambda x: x
xavier_uniform_ = torch.nn.init.xavier_uniform_
torch.nn.init.xavier_uniform_ = lambda x: x
yield
torch.nn.Linear.reset_parameters = orig_reset_parameters
torch.nn.init.xavier_uniform_ = xavier_uniform_
def load_model_by_config(
config_job_name,
config_file="projects/cosmos_video/config/config.py",
model_class=DiffusionT2WModel,
):
config_module = get_config_module(config_file)
config = importlib.import_module(config_module).make_config()
config = override(config, ["--", f"experiment={config_job_name}"])
# Check that the config is valid
config.validate()
# Freeze the config so developers don't change it during training.
config.freeze() # type: ignore
# Initialize model
with skip_init_linear():
model = model_class(config.model)
return model
def load_network_model(model: DiffusionT2WModel, ckpt_path: str):
with skip_init_linear():
model.set_up_model()
net_state_dict = torch.load(ckpt_path, map_location="cpu", weights_only=True)
log.debug(non_strict_load_model(model.model, net_state_dict))
model.cuda()
def load_tokenizer_model(model: DiffusionT2WModel, tokenizer_dir: str):
with skip_init_linear():
model.set_up_tokenizer(tokenizer_dir)
model.cuda()
def prepare_data_batch(
height: int,
width: int,
num_frames: int,
fps: int,
prompt_embedding: torch.Tensor,
negative_prompt_embedding: Optional[torch.Tensor] = None,
):
"""Prepare input batch tensors for video generation.
Args:
height (int): Height of video frames
width (int): Width of video frames
num_frames (int): Number of frames to generate
fps (int): Frames per second
prompt_embedding (torch.Tensor): Encoded text prompt embeddings
negative_prompt_embedding (torch.Tensor, optional): Encoded negative prompt embeddings
Returns:
dict: Batch dictionary containing:
- video: Zero tensor of target video shape
- t5_text_mask: Attention mask for text embeddings
- image_size: Target frame dimensions
- fps: Target frame rate
- num_frames: Number of frames
- padding_mask: Frame padding mask
- t5_text_embeddings: Prompt embeddings
- neg_t5_text_embeddings: Negative prompt embeddings (if provided)
- neg_t5_text_mask: Mask for negative embeddings (if provided)
"""
# Create base data batch
data_batch = {
"video": torch.zeros((1, 3, num_frames, height, width), dtype=torch.uint8).cuda(),
"t5_text_mask": torch.ones(1, 512, dtype=torch.bfloat16).cuda(),
"image_size": torch.tensor([[height, width, height, width]] * 1, dtype=torch.bfloat16).cuda(),
"fps": torch.tensor([fps] * 1, dtype=torch.bfloat16).cuda(),
"num_frames": torch.tensor([num_frames] * 1, dtype=torch.bfloat16).cuda(),
"padding_mask": torch.zeros((1, 1, height, width), dtype=torch.bfloat16).cuda(),
}
# Handle text embeddings
t5_embed = prompt_embedding.to(dtype=torch.bfloat16).cuda()
data_batch["t5_text_embeddings"] = t5_embed
if negative_prompt_embedding is not None:
neg_t5_embed = negative_prompt_embedding.to(dtype=torch.bfloat16).cuda()
data_batch["neg_t5_text_embeddings"] = neg_t5_embed
data_batch["neg_t5_text_mask"] = torch.ones(1, 512, dtype=torch.bfloat16).cuda()
return data_batch
def get_video_batch(model, prompt_embedding, negative_prompt_embedding, height, width, fps, num_video_frames):
"""Prepare complete input batch for video generation including latent dimensions.
Args:
model: Diffusion model instance
prompt_embedding (torch.Tensor): Text prompt embeddings
negative_prompt_embedding (torch.Tensor): Negative prompt embeddings
height (int): Output video height
width (int): Output video width
fps (int): Output video frame rate
num_video_frames (int): Number of frames to generate
Returns:
tuple:
- data_batch (dict): Complete model input batch
- state_shape (list): Shape of latent state [C,T,H,W] accounting for VAE compression
"""
raw_video_batch = prepare_data_batch(
height=height,
width=width,
num_frames=num_video_frames,
fps=fps,
prompt_embedding=prompt_embedding,
negative_prompt_embedding=negative_prompt_embedding,
)
state_shape = [
model.tokenizer.channel,
model.tokenizer.get_latent_num_frames(num_video_frames),
height // model.tokenizer.spatial_compression_factor,
width // model.tokenizer.spatial_compression_factor,
]
return raw_video_batch, state_shape
def generate_world_from_text(
model: DiffusionT2WModel,
state_shape: list[int],
is_negative_prompt: bool,
data_batch: dict,
guidance: float,
num_steps: int,
seed: int,
):
"""Generate video from text prompt using diffusion model.
Args:
model (DiffusionT2WModel): Text-to-video diffusion model
state_shape (list[int]): Latent state dimensions [C,T,H,W]
is_negative_prompt (bool): Whether negative prompt is provided
data_batch (dict): Model input batch with embeddings
guidance (float): Classifier-free guidance scale
num_steps (int): Number of diffusion sampling steps
seed (int): Random seed for reproducibility
Returns:
np.ndarray: Generated video frames [T,H,W,C], range [0,255]
The function:
1. Initializes random latent with maximum noise
2. Performs guided diffusion sampling
3. Decodes latents to pixel space
"""
x_sigma_max = (
arch_invariant_rand(
(1,) + tuple(state_shape),
torch.float32,
model.tensor_kwargs["device"],
seed,
)
* model.sde.sigma_max
)
# Generate video
sample = model.generate_samples_from_batch(
data_batch,
guidance=guidance,
state_shape=state_shape,
num_steps=num_steps,
is_negative_prompt=is_negative_prompt,
seed=seed,
x_sigma_max=x_sigma_max,
)
return sample
def generate_world_from_video(
model: DiffusionV2WModel,
state_shape: list[int],
is_negative_prompt: bool,
data_batch: dict,
guidance: float,
num_steps: int,
seed: int,
condition_latent: torch.Tensor,
num_input_frames: int,
) -> Tuple[np.array, list, list]:
"""Generate video using a conditioning video/image input.
Args:
model (DiffusionV2WModel): The diffusion model instance
state_shape (list[int]): Shape of the latent state [C,T,H,W]
is_negative_prompt (bool): Whether negative prompt is provided
data_batch (dict): Batch containing model inputs including text embeddings
guidance (float): Classifier-free guidance scale for sampling
num_steps (int): Number of diffusion sampling steps
seed (int): Random seed for generation
condition_latent (torch.Tensor): Latent tensor from conditioning video/image file
num_input_frames (int): Number of input frames
Returns:
np.array: Generated video frames in shape [T,H,W,C], range [0,255]
"""
assert not model.config.conditioner.video_cond_bool.sample_tokens_start_from_p_or_i, "not supported"
augment_sigma = DEFAULT_AUGMENT_SIGMA
if condition_latent.shape[2] < state_shape[1]:
# Padding condition latent to state shape
b, c, t, h, w = condition_latent.shape
condition_latent = torch.cat(
[
condition_latent,
condition_latent.new_zeros(b, c, state_shape[1] - t, h, w),
],
dim=2,
).contiguous()
num_of_latent_condition = compute_num_latent_frames(model, num_input_frames)
x_sigma_max = (
arch_invariant_rand(
(1,) + tuple(state_shape),
torch.float32,
model.tensor_kwargs["device"],
seed,
)
* model.sde.sigma_max
)
sample = model.generate_samples_from_batch(
data_batch,
guidance=guidance,
state_shape=state_shape,
num_steps=num_steps,
is_negative_prompt=is_negative_prompt,
seed=seed,
condition_latent=condition_latent,
num_condition_t=num_of_latent_condition,
condition_video_augment_sigma_in_inference=augment_sigma,
x_sigma_max=x_sigma_max,
)
return sample
def read_video_or_image_into_frames_BCTHW(
input_path: str,
input_path_format: str = "mp4",
H: int = None,
W: int = None,
normalize: bool = True,
max_frames: int = -1,
also_return_fps: bool = False,
) -> torch.Tensor:
"""Read video or image file and convert to tensor format.
Args:
input_path (str): Path to input video/image file
input_path_format (str): Format of input file (default: "mp4")
H (int, optional): Height to resize frames to
W (int, optional): Width to resize frames to
normalize (bool): Whether to normalize pixel values to [-1,1] (default: True)
max_frames (int): Maximum number of frames to read (-1 for all frames)
also_return_fps (bool): Whether to return fps along with frames
Returns:
torch.Tensor | tuple: Video tensor in shape [B,C,T,H,W], optionally with fps if requested
"""
log.debug(f"Reading video from {input_path}")
loaded_data = load_from_fileobj(input_path, format=input_path_format)
frames, meta_data = loaded_data
if input_path.endswith(".png") or input_path.endswith(".jpg") or input_path.endswith(".jpeg"):
frames = np.array(frames[0]) # HWC, [0,255]
if frames.shape[-1] > 3: # RGBA, set the transparent to white
# Separate the RGB and Alpha channels
rgb_channels = frames[..., :3]
alpha_channel = frames[..., 3] / 255.0 # Normalize alpha channel to [0, 1]
# Create a white background
white_bg = np.ones_like(rgb_channels) * 255 # White background in RGB
# Blend the RGB channels with the white background based on the alpha channel
frames = (rgb_channels * alpha_channel[..., None] + white_bg * (1 - alpha_channel[..., None])).astype(
np.uint8
)
frames = [frames]
fps = 0
else:
fps = int(meta_data.get("fps"))
if max_frames != -1:
frames = frames[:max_frames]
input_tensor = np.stack(frames, axis=0)
input_tensor = einops.rearrange(input_tensor, "t h w c -> t c h w")
if normalize:
input_tensor = input_tensor / 128.0 - 1.0
input_tensor = torch.from_numpy(input_tensor).bfloat16() # TCHW
log.debug(f"Raw data shape: {input_tensor.shape}")
if H is not None and W is not None:
input_tensor = transforms_F.resize(
input_tensor,
size=(H, W), # type: ignore
interpolation=transforms_F.InterpolationMode.BICUBIC,
antialias=True,
)
input_tensor = einops.rearrange(input_tensor, "(b t) c h w -> b c t h w", b=1)
if normalize:
input_tensor = input_tensor.to("cuda")
log.debug(f"Load shape {input_tensor.shape} value {input_tensor.min()}, {input_tensor.max()}")
if also_return_fps:
return input_tensor, fps
return input_tensor
def compute_num_latent_frames(model: DiffusionV2WModel, num_input_frames: int, downsample_factor=8) -> int:
"""This function computes the number of latent frames given the number of input frames.
Args:
model (DiffusionV2WModel): video generation model
num_input_frames (int): number of input frames
downsample_factor (int): downsample factor for temporal reduce
Returns:
int: number of latent frames
"""
num_latent_frames = (
num_input_frames
// model.tokenizer.video_vae.pixel_chunk_duration
* model.tokenizer.video_vae.latent_chunk_duration
)
if num_input_frames % model.tokenizer.video_vae.latent_chunk_duration == 1:
num_latent_frames += 1
elif num_input_frames % model.tokenizer.video_vae.latent_chunk_duration > 1:
assert (
num_input_frames % model.tokenizer.video_vae.pixel_chunk_duration - 1
) % downsample_factor == 0, f"num_input_frames % model.tokenizer.video_vae.pixel_chunk_duration - 1 must be divisible by {downsample_factor}"
num_latent_frames += (
1 + (num_input_frames % model.tokenizer.video_vae.pixel_chunk_duration - 1) // downsample_factor
)
return num_latent_frames
def create_condition_latent_from_input_frames(
model: DiffusionV2WModel,
input_frames: torch.Tensor,
num_frames_condition: int = 25,
):
"""Create condition latent for video generation from input frames.
Takes the last num_frames_condition frames from input as conditioning.
Args:
model (DiffusionV2WModel): Video generation model
input_frames (torch.Tensor): Input video tensor [B,C,T,H,W], range [-1,1]
num_frames_condition (int): Number of frames to use for conditioning
Returns:
tuple: (condition_latent, encode_input_frames) where:
- condition_latent (torch.Tensor): Encoded latent condition [B,C,T,H,W]
- encode_input_frames (torch.Tensor): Padded input frames used for encoding
"""
B, C, T, H, W = input_frames.shape
num_frames_encode = (
model.tokenizer.pixel_chunk_duration
) # (model.state_shape[1] - 1) / model.vae.pixel_chunk_duration + 1
log.debug(
f"num_frames_encode not set, set it based on pixel chunk duration and model state shape: {num_frames_encode}"
)
log.debug(
f"Create condition latent from input frames {input_frames.shape}, value {input_frames.min()}, {input_frames.max()}, dtype {input_frames.dtype}"
)
assert (
input_frames.shape[2] >= num_frames_condition
), f"input_frames not enough for condition, require at least {num_frames_condition}, get {input_frames.shape[2]}, {input_frames.shape}"
assert (
num_frames_encode >= num_frames_condition
), f"num_frames_encode should be larger than num_frames_condition, get {num_frames_encode}, {num_frames_condition}"
# Put the conditioal frames to the begining of the video, and pad the end with zero
condition_frames = input_frames[:, :, -num_frames_condition:]
padding_frames = condition_frames.new_zeros(B, C, num_frames_encode - num_frames_condition, H, W)
encode_input_frames = torch.cat([condition_frames, padding_frames], dim=2)
log.debug(
f"create latent with input shape {encode_input_frames.shape} including padding {num_frames_encode - num_frames_condition} at the end"
)
latent = model.encode(encode_input_frames)
return latent, encode_input_frames
def get_condition_latent(
model: DiffusionV2WModel,
input_image_or_video_path: str,
num_input_frames: int = 1,
state_shape: list[int] = None,
):
"""Get condition latent from input image/video file.
Args:
model (DiffusionV2WModel): Video generation model
input_image_or_video_path (str): Path to conditioning image/video
num_input_frames (int): Number of input frames for video2world prediction
Returns:
tuple: (condition_latent, input_frames) where:
- condition_latent (torch.Tensor): Encoded latent condition [B,C,T,H,W]
- input_frames (torch.Tensor): Input frames tensor [B,C,T,H,W]
"""
if state_shape is None:
state_shape = model.state_shape
assert num_input_frames > 0, "num_input_frames must be greater than 0"
H, W = (
state_shape[-2] * model.tokenizer.spatial_compression_factor,
state_shape[-1] * model.tokenizer.spatial_compression_factor,
)
input_path_format = input_image_or_video_path.split(".")[-1]
input_frames = read_video_or_image_into_frames_BCTHW(
input_image_or_video_path,
input_path_format=input_path_format,
H=H,
W=W,
)
condition_latent, _ = create_condition_latent_from_input_frames(model, input_frames, num_input_frames)
condition_latent = condition_latent.to(torch.bfloat16)
return condition_latent
def check_input_frames(input_path: str, required_frames: int) -> bool:
"""Check if input video/image has sufficient frames.
Args:
input_path: Path to input video or image
required_frames: Number of required frames
Returns:
np.ndarray of frames if valid, None if invalid
"""
if input_path.endswith((".jpg", ".jpeg", ".png")):
if required_frames > 1:
log.error(f"Input ({input_path}) is an image but {required_frames} frames are required")
return False
return True # Let the pipeline handle image loading
# For video input
try:
vid = imageio.get_reader(input_path, "ffmpeg")
frame_count = vid.count_frames()
if frame_count < required_frames:
log.error(f"Input video has {frame_count} frames but {required_frames} frames are required")
return False
else:
return True
except Exception as e:
log.error(f"Error reading video file {input_path}: {e}")
return False
|