File size: 21,976 Bytes
01a383f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 |
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from abc import ABC, abstractmethod
import torch
from einops import rearrange
from torch.nn.modules import Module
class BaseVAE(torch.nn.Module, ABC):
"""
Abstract base class for a Variational Autoencoder (VAE).
All subclasses should implement the methods to define the behavior for encoding
and decoding, along with specifying the latent channel size.
"""
def __init__(self, channel: int = 3, name: str = "vae"):
super().__init__()
self.channel = channel
self.name = name
@property
def latent_ch(self) -> int:
"""
Returns the number of latent channels in the VAE.
"""
return self.channel
@abstractmethod
def encode(self, state: torch.Tensor) -> torch.Tensor:
"""
Encodes the input tensor into a latent representation.
Args:
- state (torch.Tensor): The input tensor to encode.
Returns:
- torch.Tensor: The encoded latent tensor.
"""
pass
@abstractmethod
def decode(self, latent: torch.Tensor) -> torch.Tensor:
"""
Decodes the latent representation back to the original space.
Args:
- latent (torch.Tensor): The latent tensor to decode.
Returns:
- torch.Tensor: The decoded tensor.
"""
pass
@property
def spatial_compression_factor(self) -> int:
"""
Returns the spatial reduction factor for the VAE.
"""
raise NotImplementedError("The spatial_compression_factor property must be implemented in the derived class.")
class BasePretrainedImageVAE(BaseVAE):
"""
A base class for pretrained Variational Autoencoder (VAE) that loads mean and standard deviation values
from a remote store, handles data type conversions, and normalization
using provided mean and standard deviation values for latent space representation.
Derived classes should load pre-trained encoder and decoder components from a remote store
Attributes:
latent_mean (Tensor): The mean used for normalizing the latent representation.
latent_std (Tensor): The standard deviation used for normalizing the latent representation.
dtype (dtype): Data type for model tensors, determined by whether bf16 is enabled.
Args:
mean_std_fp (str): File path to the pickle file containing mean and std of the latent space.
latent_ch (int, optional): Number of latent channels (default is 16).
is_image (bool, optional): Flag to indicate whether the output is an image (default is True).
is_bf16 (bool, optional): Flag to use Brain Floating Point 16-bit data type (default is True).
"""
def __init__(
self,
name: str,
latent_ch: int = 16,
is_image: bool = True,
is_bf16: bool = True,
) -> None:
super().__init__(latent_ch, name)
dtype = torch.bfloat16 if is_bf16 else torch.float32
self.dtype = dtype
self.is_image = is_image
self.name = name
def register_mean_std(self, vae_dir: str) -> None:
latent_mean, latent_std = torch.load(os.path.join(vae_dir, "image_mean_std.pt"), weights_only=True)
target_shape = [1, self.latent_ch, 1, 1] if self.is_image else [1, self.latent_ch, 1, 1, 1]
self.register_buffer(
"latent_mean",
latent_mean.to(self.dtype).reshape(*target_shape),
persistent=False,
)
self.register_buffer(
"latent_std",
latent_std.to(self.dtype).reshape(*target_shape),
persistent=False,
)
@torch.no_grad()
def encode(self, state: torch.Tensor) -> torch.Tensor:
"""
Encode the input state to latent space; also handle the dtype conversion, mean and std scaling
"""
in_dtype = state.dtype
latent_mean = self.latent_mean.to(in_dtype)
latent_std = self.latent_std.to(in_dtype)
encoded_state = self.encoder(state.to(self.dtype))
if isinstance(encoded_state, torch.Tensor):
pass
elif isinstance(encoded_state, tuple):
assert isinstance(encoded_state[0], torch.Tensor)
encoded_state = encoded_state[0]
else:
raise ValueError("Invalid type of encoded state")
return (encoded_state.to(in_dtype) - latent_mean) / latent_std
@torch.no_grad()
def decode(self, latent: torch.Tensor) -> torch.Tensor:
"""
Decode the input latent to state; also handle the dtype conversion, mean and std scaling
"""
in_dtype = latent.dtype
latent = latent * self.latent_std.to(in_dtype) + self.latent_mean.to(in_dtype)
return self.decoder(latent.to(self.dtype)).to(in_dtype)
def reset_dtype(self, *args, **kwargs):
"""
Resets the data type of the encoder and decoder to the model's default data type.
Args:
*args, **kwargs: Unused, present to allow flexibility in method calls.
"""
del args, kwargs
self.decoder.to(self.dtype)
self.encoder.to(self.dtype)
class JITVAE(BasePretrainedImageVAE):
"""
A JIT compiled Variational Autoencoder (VAE) that loads pre-trained encoder
and decoder components from a remote store, handles data type conversions, and normalization
using provided mean and standard deviation values for latent space representation.
Attributes:
encoder (Module): The JIT compiled encoder loaded from storage.
decoder (Module): The JIT compiled decoder loaded from storage.
latent_mean (Tensor): The mean used for normalizing the latent representation.
latent_std (Tensor): The standard deviation used for normalizing the latent representation.
dtype (dtype): Data type for model tensors, determined by whether bf16 is enabled.
Args:
name (str): Name of the model, used for differentiating cache file paths.
latent_ch (int, optional): Number of latent channels (default is 16).
is_image (bool, optional): Flag to indicate whether the output is an image (default is True).
is_bf16 (bool, optional): Flag to use Brain Floating Point 16-bit data type (default is True).
"""
def __init__(
self,
name: str,
latent_ch: int = 16,
is_image: bool = True,
is_bf16: bool = True,
):
super().__init__(name, latent_ch, is_image, is_bf16)
def load_encoder(self, vae_dir: str) -> None:
"""
Load the encoder from the remote store.
"""
self.encoder = torch.load(os.path.join(vae_dir, "encoder.jit"), weights_only=True)
self.encoder.eval()
for param in self.encoder.parameters():
param.requires_grad = False
self.encoder.to(self.dtype)
def load_decoder(self, vae_dir: str) -> None:
"""
Load the decoder from the remote store.
"""
self.decoder = torch.load(os.path.join(vae_dir, "decoder.jit"), weights_only=True)
self.decoder.eval()
for param in self.decoder.parameters():
param.requires_grad = False
self.decoder.to(self.dtype)
class BaseVAE(torch.nn.Module, ABC):
"""
Abstract base class for a Variational Autoencoder (VAE).
All subclasses should implement the methods to define the behavior for encoding
and decoding, along with specifying the latent channel size.
"""
def __init__(self, channel: int = 3, name: str = "vae"):
super().__init__()
self.channel = channel
self.name = name
@property
def latent_ch(self) -> int:
"""
Returns the number of latent channels in the VAE.
"""
return self.channel
@abstractmethod
def encode(self, state: torch.Tensor) -> torch.Tensor:
"""
Encodes the input tensor into a latent representation.
Args:
- state (torch.Tensor): The input tensor to encode.
Returns:
- torch.Tensor: The encoded latent tensor.
"""
pass
@abstractmethod
def decode(self, latent: torch.Tensor) -> torch.Tensor:
"""
Decodes the latent representation back to the original space.
Args:
- latent (torch.Tensor): The latent tensor to decode.
Returns:
- torch.Tensor: The decoded tensor.
"""
pass
@property
def spatial_compression_factor(self) -> int:
"""
Returns the spatial reduction factor for the VAE.
"""
raise NotImplementedError("The spatial_compression_factor property must be implemented in the derived class.")
class VideoTokenizerInterface(ABC):
@abstractmethod
def encode(self, state: torch.Tensor) -> torch.Tensor:
pass
@abstractmethod
def decode(self, latent: torch.Tensor) -> torch.Tensor:
pass
@abstractmethod
def get_latent_num_frames(self, num_pixel_frames: int) -> int:
pass
@abstractmethod
def get_pixel_num_frames(self, num_latent_frames: int) -> int:
pass
@property
@abstractmethod
def spatial_compression_factor(self):
pass
@property
@abstractmethod
def temporal_compression_factor(self):
pass
@property
@abstractmethod
def spatial_resolution(self):
pass
@property
@abstractmethod
def pixel_chunk_duration(self):
pass
@property
@abstractmethod
def latent_chunk_duration(self):
pass
class BasePretrainedVideoTokenizer(ABC):
"""
Base class for a pretrained video tokenizer that handles chunking of video data for efficient processing.
Args:
pixel_chunk_duration (int): The duration (in number of frames) of each chunk of video data at the pixel level.
temporal_compress_factor (int): The factor by which the video data is temporally compressed during processing.
max_enc_batch_size (int): The maximum batch size to process in one go during encoding to avoid memory overflow.
max_dec_batch_size (int): The maximum batch size to process in one go during decoding to avoid memory overflow.
The class introduces parameters for managing temporal chunks (`pixel_chunk_duration` and `temporal_compress_factor`)
which define how video data is subdivided and compressed during the encoding and decoding processes. The
`max_enc_batch_size` and `max_dec_batch_size` parameters allow processing in smaller batches to handle memory
constraints.
"""
def __init__(
self,
pixel_chunk_duration: int = 17,
temporal_compress_factor: int = 8,
max_enc_batch_size: int = 8,
max_dec_batch_size: int = 4,
):
self._pixel_chunk_duration = pixel_chunk_duration
self._temporal_compress_factor = temporal_compress_factor
self.max_enc_batch_size = max_enc_batch_size
self.max_dec_batch_size = max_dec_batch_size
def register_mean_std(self, vae_dir: str) -> None:
latent_mean, latent_std = torch.load(os.path.join(vae_dir, "mean_std.pt"), weights_only=True)
latent_mean = latent_mean.view(self.latent_ch, -1)[:, : self.latent_chunk_duration]
latent_std = latent_std.view(self.latent_ch, -1)[:, : self.latent_chunk_duration]
target_shape = [1, self.latent_ch, self.latent_chunk_duration, 1, 1]
self.register_buffer(
"latent_mean",
latent_mean.to(self.dtype).reshape(*target_shape),
persistent=False,
)
self.register_buffer(
"latent_std",
latent_std.to(self.dtype).reshape(*target_shape),
persistent=False,
)
def transform_encode_state_shape(self, state: torch.Tensor) -> torch.Tensor:
"""
Rearranges the input state tensor to the required shape for encoding video data. Mainly for chunk based encoding
"""
B, C, T, H, W = state.shape
assert (
T % self.pixel_chunk_duration == 0
), f"Temporal dimension {T} is not divisible by chunk_length {self.pixel_chunk_duration}"
return rearrange(state, "b c (n t) h w -> (b n) c t h w", t=self.pixel_chunk_duration)
def transform_decode_state_shape(self, latent: torch.Tensor) -> torch.Tensor:
B, _, T, _, _ = latent.shape
assert (
T % self.latent_chunk_duration == 0
), f"Temporal dimension {T} is not divisible by chunk_length {self.latent_chunk_duration}"
return rearrange(latent, "b c (n t) h w -> (b n) c t h w", t=self.latent_chunk_duration)
@torch.no_grad()
def encode(self, state: torch.Tensor) -> torch.Tensor:
if self._temporal_compress_factor == 1:
_, _, origin_T, _, _ = state.shape
state = rearrange(state, "b c t h w -> (b t) c 1 h w")
B, C, T, H, W = state.shape
state = self.transform_encode_state_shape(state)
# use max_enc_batch_size to avoid OOM
if state.shape[0] > self.max_enc_batch_size:
latent = []
for i in range(0, state.shape[0], self.max_enc_batch_size):
latent.append(super().encode(state[i : i + self.max_enc_batch_size]))
latent = torch.cat(latent, dim=0)
else:
latent = super().encode(state)
latent = rearrange(latent, "(b n) c t h w -> b c (n t) h w", b=B)
if self._temporal_compress_factor == 1:
latent = rearrange(latent, "(b t) c 1 h w -> b c t h w", t=origin_T)
return latent
@torch.no_grad()
def decode(self, latent: torch.Tensor) -> torch.Tensor:
"""
Decodes a batch of latent representations into video frames by applying temporal chunking. Similar to encode,
it handles video data by processing smaller temporal chunks to reconstruct the original video dimensions.
It can also decode single frame image data.
Args:
latent (torch.Tensor): The latent space tensor containing encoded video data.
Returns:
torch.Tensor: The decoded video tensor reconstructed from latent space.
"""
if self._temporal_compress_factor == 1:
_, _, origin_T, _, _ = latent.shape
latent = rearrange(latent, "b c t h w -> (b t) c 1 h w")
B, _, T, _, _ = latent.shape
latent = self.transform_decode_state_shape(latent)
# use max_enc_batch_size to avoid OOM
if latent.shape[0] > self.max_dec_batch_size:
state = []
for i in range(0, latent.shape[0], self.max_dec_batch_size):
state.append(super().decode(latent[i : i + self.max_dec_batch_size]))
state = torch.cat(state, dim=0)
else:
state = super().decode(latent)
assert state.shape[2] == self.pixel_chunk_duration
state = rearrange(state, "(b n) c t h w -> b c (n t) h w", b=B)
if self._temporal_compress_factor == 1:
return rearrange(state, "(b t) c 1 h w -> b c t h w", t=origin_T)
return state
@property
def pixel_chunk_duration(self) -> int:
return self._pixel_chunk_duration
@property
def latent_chunk_duration(self) -> int:
# return self._latent_chunk_duration
assert (self.pixel_chunk_duration - 1) % self.temporal_compression_factor == 0, (
f"Pixel chunk duration {self.pixel_chunk_duration} is not divisible by latent chunk duration "
f"{self.latent_chunk_duration}"
)
return (self.pixel_chunk_duration - 1) // self.temporal_compression_factor + 1
@property
def temporal_compression_factor(self):
return self._temporal_compress_factor
def get_latent_num_frames(self, num_pixel_frames: int) -> int:
if num_pixel_frames == 1:
return 1
assert (
num_pixel_frames % self.pixel_chunk_duration == 0
), f"Temporal dimension {num_pixel_frames} is not divisible by chunk_length {self.pixel_chunk_duration}"
return num_pixel_frames // self.pixel_chunk_duration * self.latent_chunk_duration
def get_pixel_num_frames(self, num_latent_frames: int) -> int:
if num_latent_frames == 1:
return 1
assert (
num_latent_frames % self.latent_chunk_duration == 0
), f"Temporal dimension {num_latent_frames} is not divisible by chunk_length {self.latent_chunk_duration}"
return num_latent_frames // self.latent_chunk_duration * self.pixel_chunk_duration
class VideoJITTokenizer(BasePretrainedVideoTokenizer, JITVAE, VideoTokenizerInterface):
"""
Instance of BasePretrainedVideoVAE that loads encoder and decoder from JIT scripted module file
"""
def __init__(
self,
name: str,
latent_ch: int = 16,
is_bf16: bool = True,
spatial_compression_factor: int = 16,
temporal_compression_factor: int = 8,
pixel_chunk_duration: int = 17,
max_enc_batch_size: int = 8,
max_dec_batch_size: int = 4,
spatial_resolution: str = "720",
):
super().__init__(
pixel_chunk_duration,
temporal_compression_factor,
max_enc_batch_size,
max_dec_batch_size,
)
super(BasePretrainedVideoTokenizer, self).__init__(
name,
latent_ch,
False,
is_bf16,
)
self._spatial_compression_factor = spatial_compression_factor
self._spatial_resolution = spatial_resolution
@property
def spatial_compression_factor(self):
return self._spatial_compression_factor
@property
def spatial_resolution(self) -> str:
return self._spatial_resolution
class JointImageVideoTokenizer(BaseVAE, VideoTokenizerInterface):
def __init__(
self,
image_vae: torch.nn.Module,
video_vae: torch.nn.Module,
name: str,
latent_ch: int = 16,
squeeze_for_image: bool = True,
):
super().__init__(latent_ch, name)
self.image_vae = image_vae
self.video_vae = video_vae
self.squeeze_for_image = squeeze_for_image
def encode_image(self, state: torch.Tensor) -> torch.Tensor:
if self.squeeze_for_image:
return self.image_vae.encode(state.squeeze(2)).unsqueeze(2)
return self.image_vae.encode(state)
def decode_image(self, latent: torch.Tensor) -> torch.Tensor:
if self.squeeze_for_image:
return self.image_vae.decode(latent.squeeze(2)).unsqueeze(2)
return self.image_vae.decode(latent)
@torch.no_grad()
def encode(self, state: torch.Tensor) -> torch.Tensor:
B, C, T, H, W = state.shape
if T == 1:
return self.encode_image(state)
return self.video_vae.encode(state)
@torch.no_grad()
def decode(self, latent: torch.Tensor) -> torch.Tensor:
B, C, T, H, W = latent.shape
if T == 1:
return self.decode_image(latent)
return self.video_vae.decode(latent)
def reset_dtype(self, *args, **kwargs):
"""
Resets the data type of the encoder and decoder to the model's default data type.
Args:
*args, **kwargs: Unused, present to allow flexibility in method calls.
"""
del args, kwargs
self.video_vae.reset_dtype()
def get_latent_num_frames(self, num_pixel_frames: int) -> int:
if num_pixel_frames == 1:
return 1
return self.video_vae.get_latent_num_frames(num_pixel_frames)
def get_pixel_num_frames(self, num_latent_frames: int) -> int:
if num_latent_frames == 1:
return 1
return self.video_vae.get_pixel_num_frames(num_latent_frames)
@property
def spatial_compression_factor(self):
return self.video_vae.spatial_compression_factor
@property
def temporal_compression_factor(self):
return self.video_vae.temporal_compression_factor
@property
def spatial_resolution(self) -> str:
return self.video_vae.spatial_resolution
@property
def pixel_chunk_duration(self) -> int:
return self.video_vae.pixel_chunk_duration
@property
def latent_chunk_duration(self) -> int:
return self.video_vae.latent_chunk_duration
class JointImageVideoSharedJITTokenizer(JointImageVideoTokenizer):
"""
First version of the ImageVideoVAE trained with Fitsum.
We have to use seperate mean and std for image and video due to non-causal nature of the model.
"""
def __init__(self, image_vae: Module, video_vae: Module, name: str, latent_ch: int = 16):
super().__init__(image_vae, video_vae, name, latent_ch, squeeze_for_image=False)
assert isinstance(image_vae, JITVAE)
assert isinstance(
video_vae, VideoJITTokenizer
), f"video_vae should be an instance of VideoJITVAE, got {type(video_vae)}"
# a hack to make the image_vae and video_vae share the same encoder and decoder
def load_weights(self, vae_dir: str):
self.video_vae.register_mean_std(vae_dir)
self.video_vae.load_decoder(vae_dir)
self.video_vae.load_encoder(vae_dir)
|