File size: 21,976 Bytes
01a383f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
from abc import ABC, abstractmethod

import torch
from einops import rearrange
from torch.nn.modules import Module


class BaseVAE(torch.nn.Module, ABC):
    """
    Abstract base class for a Variational Autoencoder (VAE).

    All subclasses should implement the methods to define the behavior for encoding
    and decoding, along with specifying the latent channel size.
    """

    def __init__(self, channel: int = 3, name: str = "vae"):
        super().__init__()
        self.channel = channel
        self.name = name

    @property
    def latent_ch(self) -> int:
        """
        Returns the number of latent channels in the VAE.
        """
        return self.channel

    @abstractmethod
    def encode(self, state: torch.Tensor) -> torch.Tensor:
        """
        Encodes the input tensor into a latent representation.

        Args:
        - state (torch.Tensor): The input tensor to encode.

        Returns:
        - torch.Tensor: The encoded latent tensor.
        """
        pass

    @abstractmethod
    def decode(self, latent: torch.Tensor) -> torch.Tensor:
        """
        Decodes the latent representation back to the original space.

        Args:
        - latent (torch.Tensor): The latent tensor to decode.

        Returns:
        - torch.Tensor: The decoded tensor.
        """
        pass

    @property
    def spatial_compression_factor(self) -> int:
        """
        Returns the spatial reduction factor for the VAE.
        """
        raise NotImplementedError("The spatial_compression_factor property must be implemented in the derived class.")


class BasePretrainedImageVAE(BaseVAE):
    """
    A base class for pretrained Variational Autoencoder (VAE) that loads mean and standard deviation values
    from a remote store, handles data type conversions, and normalization
    using provided mean and standard deviation values for latent space representation.
    Derived classes should load pre-trained encoder and decoder components from a remote store

    Attributes:
        latent_mean (Tensor): The mean used for normalizing the latent representation.
        latent_std (Tensor): The standard deviation used for normalizing the latent representation.
        dtype (dtype): Data type for model tensors, determined by whether bf16 is enabled.

    Args:
        mean_std_fp (str): File path to the pickle file containing mean and std of the latent space.
        latent_ch (int, optional): Number of latent channels (default is 16).
        is_image (bool, optional): Flag to indicate whether the output is an image (default is True).
        is_bf16 (bool, optional): Flag to use Brain Floating Point 16-bit data type (default is True).
    """

    def __init__(
        self,
        name: str,
        latent_ch: int = 16,
        is_image: bool = True,
        is_bf16: bool = True,
    ) -> None:
        super().__init__(latent_ch, name)
        dtype = torch.bfloat16 if is_bf16 else torch.float32
        self.dtype = dtype
        self.is_image = is_image
        self.name = name

    def register_mean_std(self, vae_dir: str) -> None:
        latent_mean, latent_std = torch.load(os.path.join(vae_dir, "image_mean_std.pt"), weights_only=True)

        target_shape = [1, self.latent_ch, 1, 1] if self.is_image else [1, self.latent_ch, 1, 1, 1]

        self.register_buffer(
            "latent_mean",
            latent_mean.to(self.dtype).reshape(*target_shape),
            persistent=False,
        )
        self.register_buffer(
            "latent_std",
            latent_std.to(self.dtype).reshape(*target_shape),
            persistent=False,
        )

    @torch.no_grad()
    def encode(self, state: torch.Tensor) -> torch.Tensor:
        """
        Encode the input state to latent space; also handle the dtype conversion, mean and std scaling
        """
        in_dtype = state.dtype
        latent_mean = self.latent_mean.to(in_dtype)
        latent_std = self.latent_std.to(in_dtype)
        encoded_state = self.encoder(state.to(self.dtype))
        if isinstance(encoded_state, torch.Tensor):
            pass
        elif isinstance(encoded_state, tuple):
            assert isinstance(encoded_state[0], torch.Tensor)
            encoded_state = encoded_state[0]
        else:
            raise ValueError("Invalid type of encoded state")
        return (encoded_state.to(in_dtype) - latent_mean) / latent_std

    @torch.no_grad()
    def decode(self, latent: torch.Tensor) -> torch.Tensor:
        """
        Decode the input latent to state; also handle the dtype conversion, mean and std scaling
        """
        in_dtype = latent.dtype
        latent = latent * self.latent_std.to(in_dtype) + self.latent_mean.to(in_dtype)
        return self.decoder(latent.to(self.dtype)).to(in_dtype)

    def reset_dtype(self, *args, **kwargs):
        """
        Resets the data type of the encoder and decoder to the model's default data type.

        Args:
            *args, **kwargs: Unused, present to allow flexibility in method calls.
        """
        del args, kwargs
        self.decoder.to(self.dtype)
        self.encoder.to(self.dtype)


class JITVAE(BasePretrainedImageVAE):
    """
    A JIT compiled Variational Autoencoder (VAE) that loads pre-trained encoder
    and decoder components from a remote store, handles data type conversions, and normalization
    using provided mean and standard deviation values for latent space representation.

    Attributes:
        encoder (Module): The JIT compiled encoder loaded from storage.
        decoder (Module): The JIT compiled decoder loaded from storage.
        latent_mean (Tensor): The mean used for normalizing the latent representation.
        latent_std (Tensor): The standard deviation used for normalizing the latent representation.
        dtype (dtype): Data type for model tensors, determined by whether bf16 is enabled.

    Args:
        name (str): Name of the model, used for differentiating cache file paths.
        latent_ch (int, optional): Number of latent channels (default is 16).
        is_image (bool, optional): Flag to indicate whether the output is an image (default is True).
        is_bf16 (bool, optional): Flag to use Brain Floating Point 16-bit data type (default is True).
    """

    def __init__(
        self,
        name: str,
        latent_ch: int = 16,
        is_image: bool = True,
        is_bf16: bool = True,
    ):
        super().__init__(name, latent_ch, is_image, is_bf16)

    def load_encoder(self, vae_dir: str) -> None:
        """
        Load the encoder from the remote store.
        """
        self.encoder = torch.load(os.path.join(vae_dir, "encoder.jit"), weights_only=True)

        self.encoder.eval()
        for param in self.encoder.parameters():
            param.requires_grad = False
        self.encoder.to(self.dtype)

    def load_decoder(self, vae_dir: str) -> None:
        """
        Load the decoder from the remote store.
        """
        self.decoder = torch.load(os.path.join(vae_dir, "decoder.jit"), weights_only=True)

        self.decoder.eval()
        for param in self.decoder.parameters():
            param.requires_grad = False
        self.decoder.to(self.dtype)


class BaseVAE(torch.nn.Module, ABC):
    """
    Abstract base class for a Variational Autoencoder (VAE).

    All subclasses should implement the methods to define the behavior for encoding
    and decoding, along with specifying the latent channel size.
    """

    def __init__(self, channel: int = 3, name: str = "vae"):
        super().__init__()
        self.channel = channel
        self.name = name

    @property
    def latent_ch(self) -> int:
        """
        Returns the number of latent channels in the VAE.
        """
        return self.channel

    @abstractmethod
    def encode(self, state: torch.Tensor) -> torch.Tensor:
        """
        Encodes the input tensor into a latent representation.

        Args:
        - state (torch.Tensor): The input tensor to encode.

        Returns:
        - torch.Tensor: The encoded latent tensor.
        """
        pass

    @abstractmethod
    def decode(self, latent: torch.Tensor) -> torch.Tensor:
        """
        Decodes the latent representation back to the original space.

        Args:
        - latent (torch.Tensor): The latent tensor to decode.

        Returns:
        - torch.Tensor: The decoded tensor.
        """
        pass

    @property
    def spatial_compression_factor(self) -> int:
        """
        Returns the spatial reduction factor for the VAE.
        """
        raise NotImplementedError("The spatial_compression_factor property must be implemented in the derived class.")


class VideoTokenizerInterface(ABC):
    @abstractmethod
    def encode(self, state: torch.Tensor) -> torch.Tensor:
        pass

    @abstractmethod
    def decode(self, latent: torch.Tensor) -> torch.Tensor:
        pass

    @abstractmethod
    def get_latent_num_frames(self, num_pixel_frames: int) -> int:
        pass

    @abstractmethod
    def get_pixel_num_frames(self, num_latent_frames: int) -> int:
        pass

    @property
    @abstractmethod
    def spatial_compression_factor(self):
        pass

    @property
    @abstractmethod
    def temporal_compression_factor(self):
        pass

    @property
    @abstractmethod
    def spatial_resolution(self):
        pass

    @property
    @abstractmethod
    def pixel_chunk_duration(self):
        pass

    @property
    @abstractmethod
    def latent_chunk_duration(self):
        pass


class BasePretrainedVideoTokenizer(ABC):
    """
    Base class for a pretrained video tokenizer that handles chunking of video data for efficient processing.

    Args:
        pixel_chunk_duration (int): The duration (in number of frames) of each chunk of video data at the pixel level.
        temporal_compress_factor (int): The factor by which the video data is temporally compressed during processing.
        max_enc_batch_size (int): The maximum batch size to process in one go during encoding to avoid memory overflow.
        max_dec_batch_size (int): The maximum batch size to process in one go during decoding to avoid memory overflow.

    The class introduces parameters for managing temporal chunks (`pixel_chunk_duration` and `temporal_compress_factor`)
    which define how video data is subdivided and compressed during the encoding and decoding processes. The
    `max_enc_batch_size` and `max_dec_batch_size` parameters allow processing in smaller batches to handle memory
    constraints.
    """

    def __init__(
        self,
        pixel_chunk_duration: int = 17,
        temporal_compress_factor: int = 8,
        max_enc_batch_size: int = 8,
        max_dec_batch_size: int = 4,
    ):
        self._pixel_chunk_duration = pixel_chunk_duration
        self._temporal_compress_factor = temporal_compress_factor
        self.max_enc_batch_size = max_enc_batch_size
        self.max_dec_batch_size = max_dec_batch_size

    def register_mean_std(self, vae_dir: str) -> None:
        latent_mean, latent_std = torch.load(os.path.join(vae_dir, "mean_std.pt"), weights_only=True)

        latent_mean = latent_mean.view(self.latent_ch, -1)[:, : self.latent_chunk_duration]
        latent_std = latent_std.view(self.latent_ch, -1)[:, : self.latent_chunk_duration]

        target_shape = [1, self.latent_ch, self.latent_chunk_duration, 1, 1]

        self.register_buffer(
            "latent_mean",
            latent_mean.to(self.dtype).reshape(*target_shape),
            persistent=False,
        )
        self.register_buffer(
            "latent_std",
            latent_std.to(self.dtype).reshape(*target_shape),
            persistent=False,
        )

    def transform_encode_state_shape(self, state: torch.Tensor) -> torch.Tensor:
        """
        Rearranges the input state tensor to the required shape for encoding video data. Mainly for chunk based encoding
        """
        B, C, T, H, W = state.shape
        assert (
            T % self.pixel_chunk_duration == 0
        ), f"Temporal dimension {T} is not divisible by chunk_length {self.pixel_chunk_duration}"
        return rearrange(state, "b c (n t) h w -> (b n) c t h w", t=self.pixel_chunk_duration)

    def transform_decode_state_shape(self, latent: torch.Tensor) -> torch.Tensor:
        B, _, T, _, _ = latent.shape
        assert (
            T % self.latent_chunk_duration == 0
        ), f"Temporal dimension {T} is not divisible by chunk_length {self.latent_chunk_duration}"
        return rearrange(latent, "b c (n t) h w -> (b n) c t h w", t=self.latent_chunk_duration)

    @torch.no_grad()
    def encode(self, state: torch.Tensor) -> torch.Tensor:
        if self._temporal_compress_factor == 1:
            _, _, origin_T, _, _ = state.shape
            state = rearrange(state, "b c t h w -> (b t) c 1 h w")
        B, C, T, H, W = state.shape
        state = self.transform_encode_state_shape(state)
        # use max_enc_batch_size to avoid OOM
        if state.shape[0] > self.max_enc_batch_size:
            latent = []
            for i in range(0, state.shape[0], self.max_enc_batch_size):
                latent.append(super().encode(state[i : i + self.max_enc_batch_size]))
            latent = torch.cat(latent, dim=0)
        else:
            latent = super().encode(state)

        latent = rearrange(latent, "(b n) c t h w -> b c (n t) h w", b=B)
        if self._temporal_compress_factor == 1:
            latent = rearrange(latent, "(b t) c 1 h w -> b c t h w", t=origin_T)
        return latent

    @torch.no_grad()
    def decode(self, latent: torch.Tensor) -> torch.Tensor:
        """
        Decodes a batch of latent representations into video frames by applying temporal chunking. Similar to encode,
        it handles video data by processing smaller temporal chunks to reconstruct the original video dimensions.

        It can also decode single frame image data.

        Args:
            latent (torch.Tensor): The latent space tensor containing encoded video data.

        Returns:
            torch.Tensor: The decoded video tensor reconstructed from latent space.
        """
        if self._temporal_compress_factor == 1:
            _, _, origin_T, _, _ = latent.shape
            latent = rearrange(latent, "b c t h w -> (b t) c 1 h w")
        B, _, T, _, _ = latent.shape
        latent = self.transform_decode_state_shape(latent)
        # use max_enc_batch_size to avoid OOM
        if latent.shape[0] > self.max_dec_batch_size:
            state = []
            for i in range(0, latent.shape[0], self.max_dec_batch_size):
                state.append(super().decode(latent[i : i + self.max_dec_batch_size]))
            state = torch.cat(state, dim=0)
        else:
            state = super().decode(latent)
        assert state.shape[2] == self.pixel_chunk_duration
        state = rearrange(state, "(b n) c t h w -> b c (n t) h w", b=B)
        if self._temporal_compress_factor == 1:
            return rearrange(state, "(b t) c 1 h w -> b c t h w", t=origin_T)
        return state

    @property
    def pixel_chunk_duration(self) -> int:
        return self._pixel_chunk_duration

    @property
    def latent_chunk_duration(self) -> int:
        # return self._latent_chunk_duration
        assert (self.pixel_chunk_duration - 1) % self.temporal_compression_factor == 0, (
            f"Pixel chunk duration {self.pixel_chunk_duration} is not divisible by latent chunk duration "
            f"{self.latent_chunk_duration}"
        )
        return (self.pixel_chunk_duration - 1) // self.temporal_compression_factor + 1

    @property
    def temporal_compression_factor(self):
        return self._temporal_compress_factor

    def get_latent_num_frames(self, num_pixel_frames: int) -> int:
        if num_pixel_frames == 1:
            return 1
        assert (
            num_pixel_frames % self.pixel_chunk_duration == 0
        ), f"Temporal dimension {num_pixel_frames} is not divisible by chunk_length {self.pixel_chunk_duration}"
        return num_pixel_frames // self.pixel_chunk_duration * self.latent_chunk_duration

    def get_pixel_num_frames(self, num_latent_frames: int) -> int:
        if num_latent_frames == 1:
            return 1
        assert (
            num_latent_frames % self.latent_chunk_duration == 0
        ), f"Temporal dimension {num_latent_frames} is not divisible by chunk_length {self.latent_chunk_duration}"
        return num_latent_frames // self.latent_chunk_duration * self.pixel_chunk_duration


class VideoJITTokenizer(BasePretrainedVideoTokenizer, JITVAE, VideoTokenizerInterface):
    """
    Instance of BasePretrainedVideoVAE that loads encoder and decoder from JIT scripted module file
    """

    def __init__(
        self,
        name: str,
        latent_ch: int = 16,
        is_bf16: bool = True,
        spatial_compression_factor: int = 16,
        temporal_compression_factor: int = 8,
        pixel_chunk_duration: int = 17,
        max_enc_batch_size: int = 8,
        max_dec_batch_size: int = 4,
        spatial_resolution: str = "720",
    ):
        super().__init__(
            pixel_chunk_duration,
            temporal_compression_factor,
            max_enc_batch_size,
            max_dec_batch_size,
        )
        super(BasePretrainedVideoTokenizer, self).__init__(
            name,
            latent_ch,
            False,
            is_bf16,
        )

        self._spatial_compression_factor = spatial_compression_factor
        self._spatial_resolution = spatial_resolution

    @property
    def spatial_compression_factor(self):
        return self._spatial_compression_factor

    @property
    def spatial_resolution(self) -> str:
        return self._spatial_resolution


class JointImageVideoTokenizer(BaseVAE, VideoTokenizerInterface):
    def __init__(
        self,
        image_vae: torch.nn.Module,
        video_vae: torch.nn.Module,
        name: str,
        latent_ch: int = 16,
        squeeze_for_image: bool = True,
    ):
        super().__init__(latent_ch, name)
        self.image_vae = image_vae
        self.video_vae = video_vae
        self.squeeze_for_image = squeeze_for_image

    def encode_image(self, state: torch.Tensor) -> torch.Tensor:
        if self.squeeze_for_image:
            return self.image_vae.encode(state.squeeze(2)).unsqueeze(2)
        return self.image_vae.encode(state)

    def decode_image(self, latent: torch.Tensor) -> torch.Tensor:
        if self.squeeze_for_image:
            return self.image_vae.decode(latent.squeeze(2)).unsqueeze(2)
        return self.image_vae.decode(latent)

    @torch.no_grad()
    def encode(self, state: torch.Tensor) -> torch.Tensor:
        B, C, T, H, W = state.shape
        if T == 1:
            return self.encode_image(state)

        return self.video_vae.encode(state)

    @torch.no_grad()
    def decode(self, latent: torch.Tensor) -> torch.Tensor:
        B, C, T, H, W = latent.shape
        if T == 1:
            return self.decode_image(latent)
        return self.video_vae.decode(latent)

    def reset_dtype(self, *args, **kwargs):
        """
        Resets the data type of the encoder and decoder to the model's default data type.

        Args:
            *args, **kwargs: Unused, present to allow flexibility in method calls.
        """
        del args, kwargs
        self.video_vae.reset_dtype()

    def get_latent_num_frames(self, num_pixel_frames: int) -> int:
        if num_pixel_frames == 1:
            return 1
        return self.video_vae.get_latent_num_frames(num_pixel_frames)

    def get_pixel_num_frames(self, num_latent_frames: int) -> int:
        if num_latent_frames == 1:
            return 1
        return self.video_vae.get_pixel_num_frames(num_latent_frames)

    @property
    def spatial_compression_factor(self):
        return self.video_vae.spatial_compression_factor

    @property
    def temporal_compression_factor(self):
        return self.video_vae.temporal_compression_factor

    @property
    def spatial_resolution(self) -> str:
        return self.video_vae.spatial_resolution

    @property
    def pixel_chunk_duration(self) -> int:
        return self.video_vae.pixel_chunk_duration

    @property
    def latent_chunk_duration(self) -> int:
        return self.video_vae.latent_chunk_duration


class JointImageVideoSharedJITTokenizer(JointImageVideoTokenizer):
    """
    First version of the ImageVideoVAE trained with Fitsum.
    We have to use seperate mean and std for image and video due to non-causal nature of the model.
    """

    def __init__(self, image_vae: Module, video_vae: Module, name: str, latent_ch: int = 16):
        super().__init__(image_vae, video_vae, name, latent_ch, squeeze_for_image=False)
        assert isinstance(image_vae, JITVAE)
        assert isinstance(
            video_vae, VideoJITTokenizer
        ), f"video_vae should be an instance of VideoJITVAE, got {type(video_vae)}"
        # a hack to make the image_vae and video_vae share the same encoder and decoder

    def load_weights(self, vae_dir: str):
        self.video_vae.register_mean_std(vae_dir)

        self.video_vae.load_decoder(vae_dir)
        self.video_vae.load_encoder(vae_dir)