File size: 15,399 Bytes
01a383f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 |
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from typing import Callable, Dict, Optional, Tuple, Union
import torch
from torch import Tensor
from cosmos1.models.diffusion.conditioner import VideoExtendCondition
from cosmos1.models.diffusion.config.base.conditioner import VideoCondBoolConfig
from cosmos1.models.diffusion.diffusion.functional.batch_ops import batch_mul
from cosmos1.models.diffusion.model.model_t2w import DiffusionT2WModel
from cosmos1.utils import log, misc
@dataclass
class VideoDenoisePrediction:
x0: torch.Tensor # clean data prediction
eps: Optional[torch.Tensor] = None # noise prediction
logvar: Optional[torch.Tensor] = None # log variance of noise prediction, can be used a confidence / uncertainty
xt: Optional[torch.Tensor] = None # input to the network, before muliply with c_in
x0_pred_replaced: Optional[torch.Tensor] = None # x0 prediction with condition region replaced by gt_latent
class DiffusionV2WModel(DiffusionT2WModel):
def __init__(self, config):
super().__init__(config)
def augment_conditional_latent_frames(
self,
condition: VideoExtendCondition,
cfg_video_cond_bool: VideoCondBoolConfig,
gt_latent: Tensor,
condition_video_augment_sigma_in_inference: float = 0.001,
sigma: Tensor = None,
seed: int = 1,
) -> Union[VideoExtendCondition, Tensor]:
"""Augments the conditional frames with noise during inference.
Args:
condition (VideoExtendCondition): condition object
condition_video_indicator: binary tensor indicating the region is condition(value=1) or generation(value=0). Bx1xTx1x1 tensor.
condition_video_input_mask: input mask for the network input, indicating the condition region. B,1,T,H,W tensor. will be concat with the input for the network.
cfg_video_cond_bool (VideoCondBoolConfig): video condition bool config
gt_latent (Tensor): ground truth latent tensor in shape B,C,T,H,W
condition_video_augment_sigma_in_inference (float): sigma for condition video augmentation in inference
sigma (Tensor): noise level for the generation region
seed (int): random seed for reproducibility
Returns:
VideoExtendCondition: updated condition object
condition_video_augment_sigma: sigma for the condition region, feed to the network
augment_latent (Tensor): augmented latent tensor in shape B,C,T,H,W
"""
# Inference only, use fixed sigma for the condition region
assert (
condition_video_augment_sigma_in_inference is not None
), "condition_video_augment_sigma_in_inference should be provided"
augment_sigma = condition_video_augment_sigma_in_inference
if augment_sigma >= sigma.flatten()[0]:
# This is a inference trick! If the sampling sigma is smaller than the augment sigma, we will start denoising the condition region together.
# This is achieved by setting all region as `generation`, i.e. value=0
log.debug("augment_sigma larger than sigma or other frame, remove condition")
condition.condition_video_indicator = condition.condition_video_indicator * 0
augment_sigma = torch.tensor([augment_sigma], **self.tensor_kwargs)
# Now apply the augment_sigma to the gt_latent
noise = misc.arch_invariant_rand(
gt_latent.shape,
torch.float32,
self.tensor_kwargs["device"],
seed,
)
augment_latent = gt_latent + noise * augment_sigma[:, None, None, None, None]
_, _, c_in_augment, _ = self.scaling(sigma=augment_sigma)
# Multiply the whole latent with c_in_augment
augment_latent_cin = batch_mul(augment_latent, c_in_augment)
# Since the whole latent will multiply with c_in later, we devide the value to cancel the effect
_, _, c_in, _ = self.scaling(sigma=sigma)
augment_latent_cin = batch_mul(augment_latent_cin, 1 / c_in)
return condition, augment_latent_cin
def denoise(
self,
noise_x: Tensor,
sigma: Tensor,
condition: VideoExtendCondition,
condition_video_augment_sigma_in_inference: float = 0.001,
seed: int = 1,
) -> VideoDenoisePrediction:
"""Denoises input tensor using conditional video generation.
Args:
noise_x (Tensor): Noisy input tensor.
sigma (Tensor): Noise level.
condition (VideoExtendCondition): Condition for denoising.
condition_video_augment_sigma_in_inference (float): sigma for condition video augmentation in inference
seed (int): Random seed for reproducibility
Returns:
VideoDenoisePrediction containing:
- x0: Denoised prediction
- eps: Noise prediction
- logvar: Log variance of noise prediction
- xt: Input before c_in multiplication
- x0_pred_replaced: x0 prediction with condition regions replaced by ground truth
"""
assert (
condition.gt_latent is not None
), f"find None gt_latent in condition, likely didn't call self.add_condition_video_indicator_and_video_input_mask when preparing the condition or this is a image batch but condition.data_type is wrong, get {noise_x.shape}"
gt_latent = condition.gt_latent
cfg_video_cond_bool: VideoCondBoolConfig = self.config.conditioner.video_cond_bool
condition_latent = gt_latent
# Augment the latent with different sigma value, and add the augment_sigma to the condition object if needed
condition, augment_latent = self.augment_conditional_latent_frames(
condition, cfg_video_cond_bool, condition_latent, condition_video_augment_sigma_in_inference, sigma, seed
)
condition_video_indicator = condition.condition_video_indicator # [B, 1, T, 1, 1]
# Compose the model input with condition region (augment_latent) and generation region (noise_x)
new_noise_xt = condition_video_indicator * augment_latent + (1 - condition_video_indicator) * noise_x
# Call the abse model
denoise_pred = super().denoise(new_noise_xt, sigma, condition)
x0_pred_replaced = condition_video_indicator * gt_latent + (1 - condition_video_indicator) * denoise_pred.x0
x0_pred = x0_pred_replaced
return VideoDenoisePrediction(
x0=x0_pred,
eps=batch_mul(noise_x - x0_pred, 1.0 / sigma),
logvar=denoise_pred.logvar,
xt=new_noise_xt,
x0_pred_replaced=x0_pred_replaced,
)
def generate_samples_from_batch(
self,
data_batch: Dict,
guidance: float = 1.5,
seed: int = 1,
state_shape: Tuple | None = None,
n_sample: int | None = None,
is_negative_prompt: bool = False,
num_steps: int = 35,
condition_latent: Union[torch.Tensor, None] = None,
num_condition_t: Union[int, None] = None,
condition_video_augment_sigma_in_inference: float = None,
add_input_frames_guidance: bool = False,
x_sigma_max: Optional[torch.Tensor] = None,
) -> Tensor:
"""Generates video samples conditioned on input frames.
Args:
data_batch: Input data dictionary
guidance: Classifier-free guidance scale
seed: Random seed for reproducibility
state_shape: Shape of output tensor (defaults to model's state shape)
n_sample: Number of samples to generate (defaults to batch size)
is_negative_prompt: Whether to use negative prompting
num_steps: Number of denoising steps
condition_latent: Conditioning frames tensor (B,C,T,H,W)
num_condition_t: Number of frames to condition on
condition_video_augment_sigma_in_inference: Noise level for condition augmentation
add_input_frames_guidance: Whether to apply guidance to input frames
x_sigma_max: Maximum noise level tensor
Returns:
Generated video samples tensor
"""
if n_sample is None:
input_key = self.input_data_key
n_sample = data_batch[input_key].shape[0]
if state_shape is None:
log.debug(f"Default Video state shape is used. {self.state_shape}")
state_shape = self.state_shape
assert condition_latent is not None, "condition_latent should be provided"
x0_fn = self.get_x0_fn_from_batch_with_condition_latent(
data_batch,
guidance,
is_negative_prompt=is_negative_prompt,
condition_latent=condition_latent,
num_condition_t=num_condition_t,
condition_video_augment_sigma_in_inference=condition_video_augment_sigma_in_inference,
add_input_frames_guidance=add_input_frames_guidance,
seed=seed,
)
if x_sigma_max is None:
x_sigma_max = (
misc.arch_invariant_rand(
(n_sample,) + tuple(state_shape),
torch.float32,
self.tensor_kwargs["device"],
seed,
)
* self.sde.sigma_max
)
samples = self.sampler(x0_fn, x_sigma_max, num_steps=num_steps, sigma_max=self.sde.sigma_max)
return samples
def get_x0_fn_from_batch_with_condition_latent(
self,
data_batch: Dict,
guidance: float = 1.5,
is_negative_prompt: bool = False,
condition_latent: torch.Tensor = None,
num_condition_t: Union[int, None] = None,
condition_video_augment_sigma_in_inference: float = None,
add_input_frames_guidance: bool = False,
seed: int = 1,
) -> Callable:
"""Creates denoising function for conditional video generation.
Args:
data_batch: Input data dictionary
guidance: Classifier-free guidance scale
is_negative_prompt: Whether to use negative prompting
condition_latent: Conditioning frames tensor (B,C,T,H,W)
num_condition_t: Number of frames to condition on
condition_video_augment_sigma_in_inference: Noise level for condition augmentation
add_input_frames_guidance: Whether to apply guidance to input frames
seed: Random seed for reproducibility
Returns:
Function that takes noisy input and noise level and returns denoised prediction
"""
if is_negative_prompt:
condition, uncondition = self.conditioner.get_condition_with_negative_prompt(data_batch)
else:
condition, uncondition = self.conditioner.get_condition_uncondition(data_batch)
condition.video_cond_bool = True
condition = self.add_condition_video_indicator_and_video_input_mask(
condition_latent, condition, num_condition_t
)
uncondition.video_cond_bool = False if add_input_frames_guidance else True
uncondition = self.add_condition_video_indicator_and_video_input_mask(
condition_latent, uncondition, num_condition_t
)
def x0_fn(noise_x: torch.Tensor, sigma: torch.Tensor) -> torch.Tensor:
cond_x0 = self.denoise(
noise_x,
sigma,
condition,
condition_video_augment_sigma_in_inference=condition_video_augment_sigma_in_inference,
seed=seed,
).x0_pred_replaced
uncond_x0 = self.denoise(
noise_x,
sigma,
uncondition,
condition_video_augment_sigma_in_inference=condition_video_augment_sigma_in_inference,
seed=seed,
).x0_pred_replaced
return cond_x0 + guidance * (cond_x0 - uncond_x0)
return x0_fn
def add_condition_video_indicator_and_video_input_mask(
self, latent_state: torch.Tensor, condition: VideoExtendCondition, num_condition_t: Union[int, None] = None
) -> VideoExtendCondition:
"""Adds conditioning masks to VideoExtendCondition object.
Creates binary indicators and input masks for conditional video generation.
Args:
latent_state: Input latent tensor (B,C,T,H,W)
condition: VideoExtendCondition object to update
num_condition_t: Number of frames to condition on
Returns:
Updated VideoExtendCondition with added masks:
- condition_video_indicator: Binary tensor marking condition regions
- condition_video_input_mask: Input mask for network
- gt_latent: Ground truth latent tensor
"""
T = latent_state.shape[2]
latent_dtype = latent_state.dtype
condition_video_indicator = torch.zeros(1, 1, T, 1, 1, device=latent_state.device).type(
latent_dtype
) # 1 for condition region
# Only in inference to decide the condition region
assert num_condition_t is not None, "num_condition_t should be provided"
assert num_condition_t <= T, f"num_condition_t should be less than T, get {num_condition_t}, {T}"
log.debug(
f"condition_location first_n, num_condition_t {num_condition_t}, condition.video_cond_bool {condition.video_cond_bool}"
)
condition_video_indicator[:, :, :num_condition_t] += 1.0
condition.gt_latent = latent_state
condition.condition_video_indicator = condition_video_indicator
B, C, T, H, W = latent_state.shape
# Create additional input_mask channel, this will be concatenated to the input of the network
# See design doc section (Implementation detail A.1 and A.2) for visualization
ones_padding = torch.ones((B, 1, T, H, W), dtype=latent_state.dtype, device=latent_state.device)
zeros_padding = torch.zeros((B, 1, T, H, W), dtype=latent_state.dtype, device=latent_state.device)
assert condition.video_cond_bool is not None, "video_cond_bool should be set"
# The input mask indicate whether the input is conditional region or not
if condition.video_cond_bool: # Condition one given video frames
condition.condition_video_input_mask = (
condition_video_indicator * ones_padding + (1 - condition_video_indicator) * zeros_padding
)
else: # Unconditional case, use for cfg
condition.condition_video_input_mask = zeros_padding
return condition
|