File size: 11,571 Bytes
01a383f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Callable, Dict, Optional, Tuple
import torch
from torch import Tensor
from cosmos1.models.diffusion.conditioner import CosmosCondition
from cosmos1.models.diffusion.diffusion.functional.batch_ops import batch_mul
from cosmos1.models.diffusion.diffusion.modules.denoiser_scaling import EDMScaling
from cosmos1.models.diffusion.diffusion.modules.res_sampler import COMMON_SOLVER_OPTIONS, Sampler
from cosmos1.models.diffusion.diffusion.types import DenoisePrediction
from cosmos1.models.diffusion.module.blocks import FourierFeatures
from cosmos1.models.diffusion.module.pretrained_vae import BaseVAE
from cosmos1.utils import log, misc
from cosmos1.utils.lazy_config import instantiate as lazy_instantiate
class EDMSDE:
def __init__(
self,
sigma_max: float,
sigma_min: float,
):
self.sigma_max = sigma_max
self.sigma_min = sigma_min
class DiffusionT2WModel(torch.nn.Module):
"""Text-to-world diffusion model that generates video frames from text descriptions.
This model implements a diffusion-based approach for generating videos conditioned on text input.
It handles the full pipeline including encoding/decoding through a VAE, diffusion sampling,
and classifier-free guidance.
"""
def __init__(self, config):
"""Initialize the diffusion model.
Args:
config: Configuration object containing model parameters and architecture settings
"""
super().__init__()
# Initialize trained_data_record with defaultdict, key: image, video, iteration
self.config = config
self.precision = {
"float32": torch.float32,
"float16": torch.float16,
"bfloat16": torch.bfloat16,
}[config.precision]
self.tensor_kwargs = {"device": "cuda", "dtype": self.precision}
log.debug(f"DiffusionModel: precision {self.precision}")
# Timer passed to network to detect slow ranks.
# 1. set data keys and data information
self.sigma_data = config.sigma_data
self.state_shape = list(config.latent_shape)
self.setup_data_key()
# 2. setup up diffusion processing and scaling~(pre-condition), sampler
self.sde = EDMSDE(sigma_max=80, sigma_min=0.0002)
self.sampler = Sampler()
self.scaling = EDMScaling(self.sigma_data)
self.tokenizer = None
self.model = None
@property
def net(self):
return self.model.net
@property
def conditioner(self):
return self.model.conditioner
@property
def logvar(self):
return self.model.logvar
def set_up_tokenizer(self, tokenizer_dir: str):
self.tokenizer: BaseVAE = lazy_instantiate(self.config.tokenizer)
self.tokenizer.load_weights(tokenizer_dir)
if hasattr(self.tokenizer, "reset_dtype"):
self.tokenizer.reset_dtype()
@misc.timer("DiffusionModel: set_up_model")
def set_up_model(self, memory_format: torch.memory_format = torch.preserve_format):
"""Initialize the core model components including network, conditioner and logvar."""
self.model = self.build_model()
self.model = self.model.to(memory_format=memory_format, **self.tensor_kwargs)
def build_model(self) -> torch.nn.ModuleDict:
"""Construct the model's neural network components.
Returns:
ModuleDict containing the network, conditioner and logvar components
"""
config = self.config
net = lazy_instantiate(config.net)
conditioner = lazy_instantiate(config.conditioner)
logvar = torch.nn.Sequential(
FourierFeatures(num_channels=128, normalize=True), torch.nn.Linear(128, 1, bias=False)
)
return torch.nn.ModuleDict(
{
"net": net,
"conditioner": conditioner,
"logvar": logvar,
}
)
@torch.no_grad()
def encode(self, state: torch.Tensor) -> torch.Tensor:
"""Encode input state into latent representation using VAE.
Args:
state: Input tensor to encode
Returns:
Encoded latent representation scaled by sigma_data
"""
return self.tokenizer.encode(state) * self.sigma_data
@torch.no_grad()
def decode(self, latent: torch.Tensor) -> torch.Tensor:
"""Decode latent representation back to pixel space using VAE.
Args:
latent: Latent tensor to decode
Returns:
Decoded tensor in pixel space
"""
return self.tokenizer.decode(latent / self.sigma_data)
def setup_data_key(self) -> None:
"""Configure input data keys for video and image data."""
self.input_data_key = self.config.input_data_key # by default it is video key for Video diffusion model
def get_x0_fn_from_batch(
self,
data_batch: Dict,
guidance: float = 1.5,
is_negative_prompt: bool = False,
) -> Callable:
"""
Generates a callable function `x0_fn` based on the provided data batch and guidance factor.
This function processes the input data batch through a conditioning workflow to obtain
conditioned and unconditioned states. It then defines a nested function `x0_fn` which
applies denoising on an input `noise_x` at a given noise level `sigma`.
Args:
data_batch: A batch of data used for conditioning. Format should align with conditioner
guidance: Scalar value that modulates influence of conditioned vs unconditioned state
is_negative_prompt: Use negative prompt t5 in uncondition if true
Returns:
A function `x0_fn(noise_x, sigma)` that takes noise_x and sigma, returns x0 prediction
"""
if is_negative_prompt:
condition, uncondition = self.conditioner.get_condition_with_negative_prompt(data_batch)
else:
condition, uncondition = self.conditioner.get_condition_uncondition(data_batch)
def x0_fn(noise_x: torch.Tensor, sigma: torch.Tensor) -> torch.Tensor:
cond_x0 = self.denoise(noise_x, sigma, condition).x0
uncond_x0 = self.denoise(noise_x, sigma, uncondition).x0
raw_x0 = cond_x0 + guidance * (cond_x0 - uncond_x0)
if "guided_image" in data_batch:
# replacement trick that enables inpainting with base model
assert "guided_mask" in data_batch, "guided_mask should be in data_batch if guided_image is present"
guide_image = data_batch["guided_image"]
guide_mask = data_batch["guided_mask"]
raw_x0 = guide_mask * guide_image + (1 - guide_mask) * raw_x0
return raw_x0
return x0_fn
def denoise(self, xt: torch.Tensor, sigma: torch.Tensor, condition: CosmosCondition) -> DenoisePrediction:
"""
Performs denoising on the input noise data, noise level, and condition
Args:
xt (torch.Tensor): The input noise data.
sigma (torch.Tensor): The noise level.
condition (CosmosCondition): conditional information, generated from self.conditioner
Returns:
DenoisePrediction: The denoised prediction, it includes clean data predicton (x0), \
noise prediction (eps_pred) and optional confidence (logvar).
"""
xt = xt.to(**self.tensor_kwargs)
sigma = sigma.to(**self.tensor_kwargs)
# get precondition for the network
c_skip, c_out, c_in, c_noise = self.scaling(sigma=sigma)
# forward pass through the network
net_output = self.net(
x=batch_mul(c_in, xt), # Eq. 7 of https://arxiv.org/pdf/2206.00364.pdf
timesteps=c_noise, # Eq. 7 of https://arxiv.org/pdf/2206.00364.pdf
**condition.to_dict(),
)
logvar = self.model.logvar(c_noise)
x0_pred = batch_mul(c_skip, xt) + batch_mul(c_out, net_output)
# get noise prediction based on sde
eps_pred = batch_mul(xt - x0_pred, 1.0 / sigma)
return DenoisePrediction(x0_pred, eps_pred, logvar)
def generate_samples_from_batch(
self,
data_batch: Dict,
guidance: float = 1.5,
seed: int = 1,
state_shape: Tuple | None = None,
n_sample: int | None = None,
is_negative_prompt: bool = False,
num_steps: int = 35,
solver_option: COMMON_SOLVER_OPTIONS = "2ab",
x_sigma_max: Optional[torch.Tensor] = None,
sigma_max: float | None = None,
) -> Tensor:
"""Generate samples from a data batch using diffusion sampling.
This function generates samples from either image or video data batches using diffusion sampling.
It handles both conditional and unconditional generation with classifier-free guidance.
Args:
data_batch (Dict): Raw data batch from the training data loader
guidance (float, optional): Classifier-free guidance weight. Defaults to 1.5.
seed (int, optional): Random seed for reproducibility. Defaults to 1.
state_shape (Tuple | None, optional): Shape of the state tensor. Uses self.state_shape if None. Defaults to None.
n_sample (int | None, optional): Number of samples to generate. Defaults to None.
is_negative_prompt (bool, optional): Whether to use negative prompt for unconditional generation. Defaults to False.
num_steps (int, optional): Number of diffusion sampling steps. Defaults to 35.
solver_option (COMMON_SOLVER_OPTIONS, optional): Differential equation solver option. Defaults to "2ab" (multistep solver).
x_sigma_max (Optional[torch.Tensor], optional): Initial noisy tensor. If None, randomly initialized. Defaults to None.
sigma_max (float | None, optional): Maximum noise level. Uses self.sde.sigma_max if None. Defaults to None.
Returns:
Tensor: Generated samples after diffusion sampling
"""
x0_fn = self.get_x0_fn_from_batch(data_batch, guidance, is_negative_prompt=is_negative_prompt)
if sigma_max is None:
sigma_max = self.sde.sigma_max
else:
log.info("Using provided sigma_max for diffusion sampling.")
if x_sigma_max is None:
x_sigma_max = (
misc.arch_invariant_rand(
(n_sample,) + tuple(state_shape),
torch.float32,
self.tensor_kwargs["device"],
seed,
)
* sigma_max
)
samples = self.sampler(
x0_fn, x_sigma_max, num_steps=num_steps, sigma_max=sigma_max, solver_option=solver_option
)
return samples
|