File size: 6,747 Bytes
01a383f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os

import torch

from cosmos1.models.diffusion.inference.inference_utils import add_common_arguments, check_input_frames, validate_args
from cosmos1.models.diffusion.inference.world_generation_pipeline import DiffusionVideo2WorldGenerationPipeline
from cosmos1.utils import log, misc
from cosmos1.utils.io import read_prompts_from_file, save_video

torch.enable_grad(False)


def parse_arguments() -> argparse.Namespace:
    parser = argparse.ArgumentParser(description="Video to world generation demo script")
    # Add common arguments
    add_common_arguments(parser)

    # Add video2world specific arguments
    parser.add_argument(
        "--diffusion_transformer_dir",
        type=str,
        default="Cosmos-1.0-Diffusion-7B-Video2World",
        help="DiT model weights directory name relative to checkpoint_dir",
        choices=[
            "Cosmos-1.0-Diffusion-7B-Video2World",
            "Cosmos-1.0-Diffusion-14B-Video2World",
        ],
    )
    parser.add_argument(
        "--prompt_upsampler_dir",
        type=str,
        default="Pixtral-12B",
        help="Prompt upsampler weights directory relative to checkpoint_dir",
    )
    parser.add_argument(
        "--input_image_or_video_path",
        type=str,
        help="Input video/image path for generating a single video",
    )
    parser.add_argument(
        "--num_input_frames",
        type=int,
        default=1,
        help="Number of input frames for video2world prediction",
        choices=[1, 9],
    )

    return parser.parse_args()


def demo(cfg):
    """Run video-to-world generation demo.

    This function handles the main video-to-world generation pipeline, including:
    - Setting up the random seed for reproducibility
    - Initializing the generation pipeline with the provided configuration
    - Processing single or multiple prompts/images/videos from input
    - Generating videos from prompts and images/videos
    - Saving the generated videos and corresponding prompts to disk

    Args:
        cfg (argparse.Namespace): Configuration namespace containing:
            - Model configuration (checkpoint paths, model settings)
            - Generation parameters (guidance, steps, dimensions)
            - Input/output settings (prompts/images/videos, save paths)
            - Performance options (model offloading settings)

    The function will save:
        - Generated MP4 video files
        - Text files containing the processed prompts

    If guardrails block the generation, a critical log message is displayed
    and the function continues to the next prompt if available.
    """
    misc.set_random_seed(cfg.seed)
    inference_type = "video2world"
    validate_args(cfg, inference_type)

    # Initialize video2world generation model pipeline
    pipeline = DiffusionVideo2WorldGenerationPipeline(
        inference_type=inference_type,
        checkpoint_dir=cfg.checkpoint_dir,
        checkpoint_name=cfg.diffusion_transformer_dir,
        prompt_upsampler_dir=cfg.prompt_upsampler_dir,
        enable_prompt_upsampler=not cfg.disable_prompt_upsampler,
        offload_network=cfg.offload_diffusion_transformer,
        offload_tokenizer=cfg.offload_tokenizer,
        offload_text_encoder_model=cfg.offload_text_encoder_model,
        offload_prompt_upsampler=cfg.offload_prompt_upsampler,
        offload_guardrail_models=cfg.offload_guardrail_models,
        guidance=cfg.guidance,
        num_steps=cfg.num_steps,
        height=cfg.height,
        width=cfg.width,
        fps=cfg.fps,
        num_video_frames=cfg.num_video_frames,
        seed=cfg.seed,
        num_input_frames=cfg.num_input_frames,
    )

    # Handle multiple prompts if prompt file is provided
    if cfg.batch_input_path:
        log.info(f"Reading batch inputs from path: {args.batch_input_path}")
        prompts = read_prompts_from_file(cfg.batch_input_path)
    else:
        # Single prompt case
        prompts = [{"prompt": cfg.prompt, "visual_input": cfg.input_image_or_video_path}]

    os.makedirs(cfg.video_save_folder, exist_ok=True)
    for i, input_dict in enumerate(prompts):
        current_prompt = input_dict.get("prompt", None)
        if current_prompt is None and cfg.disable_prompt_upsampler:
            log.critical("Prompt is missing, skipping world generation.")
            continue
        current_image_or_video_path = input_dict.get("visual_input", None)
        if current_image_or_video_path is None:
            log.critical("Visual input is missing, skipping world generation.")
            continue

        # Check input frames
        if not check_input_frames(current_image_or_video_path, cfg.num_input_frames):
            continue

        # Generate video
        generated_output = pipeline.generate(
            prompt=current_prompt,
            image_or_video_path=current_image_or_video_path,
            negative_prompt=cfg.negative_prompt,
        )
        if generated_output is None:
            log.critical("Guardrail blocked video2world generation.")
            continue
        video, prompt = generated_output

        if cfg.batch_input_path:
            video_save_path = os.path.join(cfg.video_save_folder, f"{i}.mp4")
            prompt_save_path = os.path.join(cfg.video_save_folder, f"{i}.txt")
        else:
            video_save_path = os.path.join(cfg.video_save_folder, f"{cfg.video_save_name}.mp4")
            prompt_save_path = os.path.join(cfg.video_save_folder, f"{cfg.video_save_name}.txt")

        # Save video
        save_video(
            video=video,
            fps=cfg.fps,
            H=cfg.height,
            W=cfg.width,
            video_save_quality=5,
            video_save_path=video_save_path,
        )

        # Save prompt to text file alongside video
        with open(prompt_save_path, "wb") as f:
            f.write(prompt.encode("utf-8"))

        log.info(f"Saved video to {video_save_path}")
        log.info(f"Saved prompt to {prompt_save_path}")


if __name__ == "__main__":
    args = parse_arguments()
    demo(args)